The effect of the initial concentration of glycerol on the hydrogen produced by strains of the genus clostridium spp.
dc.contributor.author | Jáuregui, Manuel Alejandro | spa |
dc.contributor.author | Ladino, Alexander | spa |
dc.contributor.author | Malagón-Romero, Dionisio | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061 | spa |
dc.contributor.orcid | https://orcid.org/0000-0003-2890-2180 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2019-06-06T21:32:13Z | spa |
dc.date.available | 2019-06-06T21:32:13Z | spa |
dc.date.issued | 2017-10-23 | spa |
dc.description.abstract | Hydrogen produced by microorganisms is a topic of growing interest because of its potential for derivation from several agro-industrial by-products. In this study, we evaluated the hydrogen production of strains of genus Clostridium (Clostridium acetobutylicum and Clostridium butyricum) using glycerol as a carbon source. Fermentation studies were conducted using three initial concentrations of glycerol: 10, 30 and 50 g/L. The micro-organism growth kinetics and the amounts of solvents and gases were recorded over 48 h. The strain C. acetobutylicum exhibited the best results in terms of hydrogen production, the highest production yield (Yp/s) of 0.37 mol H2/mol glycerol and the highest level of productivity (0.75 mg H2/(L·h)). Based on these results, it is reasonable to conclude that glycerol could be effectively exploited as a carbon source for hydrogen production, which adds value to this primary by-product of standard biodiesel processes. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Jáuregui, M. A., Ladino, A., & Malagón-Romero, D. (2017). The effect of the initial concentration of glycerol on the hydrogen produced by strains of the genus clostridium spp. Bogotá: doi:10.1080/19397038.2017.1387826 | spa |
dc.identifier.doi | https://doi.org/10.1080/19397038.2017.1387826 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/17052 | |
dc.relation.references | Antonopoulou, Georgia, Hariklia N. Gavala, Ioannis V. Skiadas, and Gerasimos Lyberatos. 2011. “Effect of Substrate Concentration on Fermentative Hydrogen Production from Sweet Sorghum Extract.” International Journal of Hydrogen Energy 36 (8): 4843–4851. Elsevier Elsevier . doi:10.1016/j.ijhydene.2011.01.077. | spa |
dc.relation.references | Bartels, Jeffrey R., Michael B. Pate, and Norman K. Olson. 2010. “An Economic Survey of Hydrogen Production from Conventional and Alternative Energy Sources.” International Journal of Hydrogen Energy 35 (16): 8371–8384. doi:10.1016/j.ijhydene.2010.04.035. | spa |
dc.relation.references | Bernal, Mauricio, Lizeth K. Tinoco, Luz Torres, Dionisio Malagón-Romero, and Dolly Montoya. 2013. “Evaluating Colombian Clostridium spp. Strains’ Hydrogen Production Using Glycerol as Substrate.” Electronic Journal of Biotechnology 16 (2): 6. | spa |
dc.relation.references | Dincer, Ibrahim. 2012. “Green Methods for Hydrogen Production.” International Journal of Hydrogen Energy 37 (2): 1954–1971. Elsevier Elsevier. doi:10.1016/j.ijhydene.2011.03.173. | spa |
dc.relation.references | European Commission. 2003. World Energy, Technology and Climate Policy Outlook. Energy. http://ec.europa.eu/research/energy/pdf/weto_final_ report.pdf. | spa |
dc.relation.references | Gallardo, R., M. Alves, and L. R. Rodrigues. 2014. “Modulation of Crude Glycerol Fermentation by Clostridium pasteurianum DSM 525 towards the Production of Butanol.” Biomass and Bioenergy 71: 134–143. doi:10.1016/j.biombioe.2014.10.015. | spa |
dc.relation.references | Heyndrickx, M., P. De Vos, M. Vancanneyt, and J. De Ley. 1991. “The Fermentation of Glycerol by Clostridium butyricum LMG 1212t2 and 1213t1 and C. pasteurianum LMG 3285.” Applied Microbiology and Biotechnology 34: 637–642. doi:10.1007/BF00167914. | spa |
dc.relation.references | Kapdan, Ilgi Karapinar, and Fikret Kargi. 2006. “Bio-Hydrogen Production from Waste Materials.” Enzyme and Microbial Technology 38 (5): 569– 582. doi:10.1016/j.enzmictec.2005.09.015. | spa |
dc.relation.references | Kubiak, P., K. Leja, K. Myszka, E. Celińska, M. Spychała, D. Szymanowska- Powałowska, K. Czaczyk, and W. Grajek. 2012. “Physiological Predisposition of Various Clostridium Species to Synthetize 1,3-Propanediol from Glycerol.” Process Biochemistry 47: 1308–1319. doi:10.1016/j.procbio.2012.05.012. | spa |
dc.relation.references | Marin, Juan Sebastian, and Lorena Vargas. 2012. “Identificación De La Cepa Nativa Del Género Clostridium Más Eficiente En La Producción De Hidrógeno Según Su Hábitat De Procedencia.” [Identification of the higher Hydrogen yield of Native Clostridium Strains According to the Provenance Habitat.] Universidad Nacional de Colombia. | spa |
dc.relation.references | Papanikolaou, Seraphim, Patricia Ruiz-Sanchez, Bernard Pariset, Fabrice Blanchard, and Michel Fick. 2000. “High Production of 1,3-Propanediol from Industrial Glycerol by a Newly Isolated Clostridium butyricum Strain.” Journal of Biotechnology 77 (2–3): 191–208. doi:10.1016/S0168- 1656(99)00217-5. | spa |
dc.relation.references | Sarma, Saurabh Jyoti, Satinder Kaur Brar, Eduardo Bittencourt Sydney, Yann Le Bihan, Gerardo Buelna, and Carlos Ricardo Soccol. 2012. “Microbial Hydrogen Production by Bioconversion of Crude Glycerol: A Review.” International Journal of Hydrogen Energy 37 (8): 6473–6490. doi:10.1016/j.ijhydene.2012.01.050. | spa |
dc.relation.references | Seifert, K., M. Waligorska, M. Wojtowski, and M. Laniecki. 2009. “Hydrogen Generation from Glycerol in Batch Fermentation Process.” International Journal of Hydrogen Energy 34 (9): 3671–3678. doi:10.1016/j.ijhydene.2009.02.045. | spa |
dc.relation.references | Tanneru, Sathish K., Divya R. Parapati, and Philip H. Steele. 2014. “Pretreatment of Bio-Oil Followed by Upgrading via Esterification to Boiler Fuel.” Energy 73: 214–220. doi:10.1016/j.energy.2014.06.039. | spa |
dc.relation.references | Tasri, Adek, and Anita Susilawati. 2014. “Selection among Renewable Energy Alternatives Based on a Fuzzy Analytic Hierarchy Process in Indonesia.” Sustainable Energy Technologies and Assessments 7 (September): 34–44. doi:10.1016/j.seta.2014.02.008. | spa |
dc.relation.references | Won, Wangyun, Hweeung Kwon, Jee-Hoon Han, and Jiyong Kim. 2017. “Design and Operation of Renewable Energy Sources Based Hydrogen Supply System: Technology Integration and Optimization.” Renewable Energy 103: 226–238. doi:10.1016/j.renene.2016.11.038. | spa |
dc.relation.references | Zeng, A. P., A. Ross, H. Biebl, C. Tag, B. Günzel, and W. D. Deckwer. 1994. “Multiple Product Inhibition and Growth Modeling of Clostridium butyricum and Klebsiella pneumoniae in Glycerol Fermentation.” Biotechnology and Bioengineering 44 (8): 902–911. | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Clostridium acetobutylicum | spa |
dc.subject.keyword | Clostridium butyricum | spa |
dc.subject.keyword | Glycerol | spa |
dc.subject.keyword | Hydrogen | spa |
dc.subject.keyword | Biodiesel | spa |
dc.title | The effect of the initial concentration of glycerol on the hydrogen produced by strains of the genus clostridium spp. | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- The effect of the initial concentration of glycerol on the hydrogen produced by strains of the genus clostridium spp..pdf
- Tamaño:
- 1.06 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo WOS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: