Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes

dc.contributor.advisorMerchán Arenas, Diego Rolandospa
dc.contributor.advisorMartínez Bonilla, Carlos Andrésspa
dc.contributor.authorSantos Acuña, Camila Andreaspa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2019-05-14T23:23:35Zspa
dc.date.available2019-05-14T23:23:35Zspa
dc.date.issued2019-05-13spa
dc.descriptionDebido a las actividades antropogénicas que promueven la contaminación del recurso agua, incluyendo los procesos industriales en los que intervienen los colorantes, día a día se buscan alternativas para su tratamiento. El uso de filtros o sistemas que permitan la eliminación de estos colorantes en aguas residuales persiste como un reto ambiental actual. Por tal razón, se sintetizó un polímero sulfonado de bajo costo a base de anetol (PAS), componente mayoritario del aceite esencial del anís estrellado. Se obtuvo un sólido blanco insoluble con un rendimiento del 85 %, el cual fue caracterizado empleando técnicas instrumentales como: espectroscopía infrarroja, identificando bandas de grupos sulfónico en 1142 y 1342 cm-1; análisis termogravimétrico, donde se evidenció la fase final de la degradación térmica del polímero (90 – 95 %) por encima de 600 °C; MALDI-TOF, donde se calculó una masa molar promedio (Mn ) entre 1013 - 1412 Da.; y finalmente, a través del análisis SEM-EDS se determinó su morfología ovalada con superficies suaves y lisas, detectando la presencia de los elementos característicos, C (37 %), O (40 %), S (5 %) y Na (10 %). El material obtenido se empleó por primera vez en pruebas de adsorción de colorantes, dando como resultado una capacidad máxima de adsorción de 30.7 mg/g para el colorante AM y una cinética de adsorción descrita por una ecuación de pseudo-segundo orden, alcanzando el equilibrio dentro de los primeros 25 min de contacto. Los datos presentes mostraron un mejor ajuste con el modelo de la isoterma de Langmuir.spa
dc.description.abstractDue to the anthropogenic activities that promote the contamination of the water resource, including the industrial processes in which the dyes intervene, day by day alternatives for its treatment are looked for. The use of filters or systems that allow the elimination of these dyes in wastewater persists as a current environmental challenge. For this reason, a low-cost sulfonated polymer based on anethole (PAS), a major component of the essential oil of star anise, was synthesized. An insoluble white solid was obtained with a yield of 85%, which was characterized using instrumental techniques such as: infrared spectroscopy, identifying bands of sulfonic groups at 1142 and 1342 cm-1; thermogravimetric analysis, where the final phase of the thermal degradation of the polymer (90-95%) above 600 ° C was evidenced; MALDI-TOF, where an average molar mass (Mn ) between 1013 - 1412 Da was calculated; and finally, through the SEM-EDS analysis, its oval morphology was determined with irregular and smooth surfaces, detecting the presence of the characteristic elements, C (37%), O (40%), S (5%) and Na (10 %). The material obtained was used for the first time in dye adsorption tests, resulting in a maximum adsorption capacity of 30.7 mg / g for the AM dye and an adsorption kinetics described by a pseudo-second order equation, reaching equilibrium within the first 25 minutes of contact. The present data showed a better fit with the Langmuir isotherm model.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationSantos Acuña C. A. (2019). Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/16694
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programPregrado Química Ambientalspa
dc.relation.referencesAdak A., Bandyopadhyay M. & Pal A. (2005). Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep. Purif. Technol., 44, 139–144.spa
dc.relation.referencesAl-Ghouti M. A., Khraisheh M. A. M., Allen S. J. & Ahmad M. N. (2003). The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage., 69(3), 229–238.spa
dc.relation.referencesAl-Harbi M. M., Qureshi S., Raza M., Ahmed M. M., Giangreco A. B. & Shah A. H. (1995). Influence of anethole treatment on the tumour induced by Ehrlich ascites carcinoma cells in paw of Swiss albino mice. Eur J Cancer Prev, 4(4), 307–318.spa
dc.relation.referencesAlkaim A. F. (2013). Study the adsorption of remazol brilliant blue dye from aqueous solutions using bioresource activated carbon. Iraqi Natl. J. Chem, 52, 369–381.spa
dc.relation.referencesAnnadurai G., Juang R. S. & Lee D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater., 92(3), 263–274.spa
dc.relation.referencesAoshima S. & Kanaoka S. (2009). A renaissance in living cationic polymerization. Chem. Rev., 109(11), 5245–5287.spa
dc.relation.referencesBakkali F., Averbeck S., Averbeck D. & Idaomar M. (2008). Biological effects of essential oils A review. Food. Chem. Toxicol., 46(2), 446–475.spa
dc.relation.referencesBalapure K., Bhatt N. & Madamwar D. (2015). Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour. Technol., 175, 1–7.spa
dc.relation.referencesBattu S., Rabinovitch-Chable H. & Beneytout J. (1994). Effectiveness of Talc as Adsorbent for Purification and Immobilization of Plant Lipoxygenases. J. Agric. Food Chem., 42, 2115–2119.spa
dc.relation.referencesBello O. S., Bello O. U. & Lateef I. O. (2014). Adsorption Characteristics of Mango Leaf (Mangifera indica) Powder as Adsorbent for Malachite Green Dye Removal from Aqueous Solution. Covenant J. Physic Life Sci., 2(1), 1–13.spa
dc.relation.referencesBhattacharya K. G. & Sharma A. (2005). Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder. Dye. Pigment., 65(1), 51–59.spa
dc.relation.referencesBishop C. (1995). Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden and Betche) Cheel (tea tree) against tobacoo mosaic virus. J. Essent. Oil Res., 7, 641–644.spa
dc.relation.referencesBruckner R. (2002). Advanced Organic Chemistry Reaction Mechanisms.spa
dc.relation.referencesBulut E., Özacar M. & Ayhan I. (2008). Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater., 154, 613–622.spa
dc.relation.referencesBulut Y. & Aydin H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1–3), 259–267.spa
dc.relation.referencesBurt S. (2004). Essential oils: their antibacterial properties and potential applications in foods a review. Int. J. Food. Microbiol., 94, 223–253.spa
dc.relation.referencesCai M., Guo X., Liang H. & Sun P. (2013). Microwave-assisted extraction and antioxidant activity of star anise oil from Illicium verum Hook . f. J. Food Sci. Technol., 1–7.spa
dc.relation.referencesCalabrese C., Gou Q., Maris A., Melandri S. & Caminati W. (2016). Conformational Equilibrium and Internal Dynamics of E-Anethole: A Rotational Study. J. Phys. Chem. B, 120(27), 6587–6591.spa
dc.relation.referencesChang K. & Ahn Y. (2001). Fumigant activity of ( E ) -anethole identified in Illicium verum fruit against Blattella germanica. Pest. Manag. Sci., 58, 161–166.spa
dc.relation.referencesChapman C. & Siebold A. (1916). Proceedings of the Society of Public Analysts and Other Analytical Chemists. On the Application of Adsorption too the Detection and Separation of Certain Dyes. Analyst, 44(520), 339–345.spa
dc.relation.referencesCharles D. (2013). Anise Star. In Antioxidant Properties of Spices, Herbs and Other Sources (p. 165). New York: Springer.spa
dc.relation.referencesChen B., Miller M. E. & Gross R. A. (2007). Effects of porous polystyrene resin parameters on Candida antarctica lipase B adsorption, distribution, and polyester synthesis activity. Langmuir, 23(11), 6467–6474.spa
dc.relation.referencesCornel P. & Sontheimer H. (1986). Sorption of Dissolved Organics From Aqueous Solution By Polystyrene Resin I. Resin Characterization and Sorption Equilibrium. Chem Eng Sci., 41(7), 1791–1800.spa
dc.relation.referencesCorreia V. M., Stephenson T. & Judd S. J. (1994). Characterisation of textile wastewaters a review. Environ. Technol., 15(10), 917–929.spa
dc.relation.referencesCosta J. (2005). Diccionario de Química y Física. España: Díaz de Santos.spa
dc.relation.referencesCrini G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 30, 38–70.spa
dc.relation.referencesCrini G. (2008). Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dye. Pigment., 77, 415–426.spa
dc.relation.referencesDa browski A. (2001). Adsorption - From theory to practice. Adv. Colloid Interface Sci., 93(1–3), 135–224.spa
dc.relation.referencesDavis M. C., Guenthner A. J., Sahagun C. M., Lamison K. R., Reams J. T. & Mabry J. M. (2013). Polycyanurate networks from dehydroanethole cyclotrimers: Synthesis and characterization. Polymer, 54(26), 6902–6909.spa
dc.relation.referencesDhakal B., Bohé L. & Crich D. (2017). Trifluoromethanesulfonate Anion as Nucleophile in Organic Chemistry. J. Org. Chem., 82(18), 9263–9269.spa
dc.relation.referencesEckenrode H. M., Jen S., Han J., Yeh A. & Dai H. (2005). Adsorption of a Cationic Dye Molecule on Polystyrene Microspheres in Colloids : Effect of Surface Charge and Composition Probed by Second Harmonic Generation. J. Phys. Chem. B, 109, 4646–4653.spa
dc.relation.referencesEngineers N. B. of C. &. (2013). Spices & Condiments (Second). Asia Pacific Business Press Inc.spa
dc.relation.referencesEspantaleón A. G., Nieto J. A., Fernández M. & Marsal A. (2003). Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl. Clay Sci., 24(1–2), 105–110.spa
dc.relation.referencesFernández J., Kiwi J., Lizama C., Freer J., Baeza J. & Mansilla H. D. (2002). Factorial experimental design of orange II photocatalytic discolouration. J. Photochem. Photobiol. A Chem., 151(1–3), 213–219.spa
dc.relation.referencesFleischmann C., Lievenbrück M. & Ritter H. (2015). Polymers and Dyes: Developments and Applications. Polymers, 7, 717–746.spa
dc.relation.referencesFreire R. S., Morais S. M., Catunda F. E. A. & Pinheiro D. C. S. N. (2005). Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds. Bioorganic Med. Chem., 13(13), 4353–4358.spa
dc.relation.referencesGaleotti N., Ghelardini C., Di L., Mannelli C., Mazzanti G., Baghiroli L. & Bartolini A. (2001). Local Anaesthetic Activity of (+) and (-) Menthol. Planta Med., 67, 174–176.spa
dc.relation.referencesGarcia-segura S., Centellas F., Arias C., Garrido J. A., Rodríguez R. M., Cabot P. L. & Brillas E. (2011). Electrochimica Acta Comparative decolorization of monoazo , diazo and triazo dyes by electro-Fenton process. Electrochimica Acta, 58, 303–311.spa
dc.relation.referencesGibson H. W. & Bailey F. (1980). Chemical Modification of Polymers. 13.’ Sulfonation of Polystyrene Surfaces. Macromolecules, 13, 34–41.spa
dc.relation.referencesGilbert E. E. (1962). The Reactions of Sulfur Trioxide, and of its adducts, with organic compounds. Chem. Rev., 62(6), 549–589.spa
dc.relation.referencesGómez J. M., Galán J., Rodríguez A. & Walker G. M. (2014). Dye adsorption onto mesoporous materials: PH influence, kinetics and equilibrium in buffered and saline media. J. Environ. Manage., 146, 355–361.spa
dc.relation.referencesGong R., Li M., Yang C., Sun Y. & Chen J. (2005). Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater., 121(1–3), 247–250.spa
dc.relation.referencesGross M., Friedman J., Dudai N., Larko O., Cohen Y., Bar E., Ravid U., Putievsky E. & Lewinsohn E. (2002). Biosynthesis of estragole and t-anethole in bitter fennel (Foeniculum vulgare Mill . var . vulgare) chemotypes . Changes in SAM: phenylpropene O-methyltransferase activities during development. Plant. Sci, 163(5), 1047–1053.spa
dc.relation.referencesGudelj I., Hrenović J., Dragičević T. L., Delaš F., Soljan V. & Gudelj H. (2011). Azo Boje, Njihov Utjecaj Na Okolis I Potencijal Biotehnoloske Strategije Za Njihovu Biorazgradnju I Detoksifikaciju. Arh Hig Rada Toksikol, 62(1), 91–101.spa
dc.relation.referencesGupta V. K. (2009). Application of low-cost adsorbents for dye removal – A review. J. Environ. Manage., 90(8), 2313–2342.spa
dc.relation.referencesHachem C., Bocquillon F., Zahraa O. & Bouchy M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. Dye. Pigment., 49(2), 117–125.spa
dc.relation.referencesHameed B. H. & Tan I. A. W. (2010). Nitric acid-treated bamboo waste as low-cost adsorbent for removal of cationic dye from aqueous solution. Desalin. Water Treat., 21, 357–363.spa
dc.relation.referencesHe F., Gao Y., Jin K., Wang J., Sun J. & Fang Q. (2016). Conversion of a Biorenewable Plant Oil (Anethole) to a New Fluoropolymer with Both Low Dielectric Constant and Low Water Uptake. ACS Sustain. Chem. Eng., 4(8), 4451–4456.spa
dc.relation.referencesHigashimura T., Hirokawa Y., Matsuzaki K., Kawamura T. & Uryu T. (1979). Cationic Polymerization of Anethole adn its Model Reaction: A stereochemical approah to the propagation mechanism. Polym. J, 11(11), 855–862.spa
dc.relation.referencesHigashimura T. & Hiza M. (1981). Cationic Oligomerization of Anethole: Selective Synthesis of Dimers and Trimers. J. Polym. Sci., 19, 1957–1966.spa
dc.relation.referencesHillmyer M. A. (2012). Polymer Synthesis. Polymer Science:A Comprehensive Reference (Vol. 1). Elsevier B.V.spa
dc.relation.referencesHirokawa Y. (1979). Cationic Polymerization of Anethole and Its Model Reaction : A Stereochemical Approach to the Propagation Mechanism. Polym. J., 11(11), 855–862.spa
dc.relation.referencesHowes M.-J. R., Kite G. C. & Simmonds M. S. J. (2009). Distinguishing chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry. J. Agric. Food Chem., 57(13), 5783–5789.spa
dc.relation.referencesHsueh C. C. & Chen B. Y. (2008). Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. J. Hazard. Mater., 154(1–3), 703–710.spa
dc.relation.referencesHussain F., Hojjati M., Okamoto M. & Gorga R. E. (2006). Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater., 40(17), 1511–1575.spa
dc.relation.referencesInbaraj B. S., Chien J. T., Ho G. H., Yang J. & Chen B. H. (2006). Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly(γ-glutamic acid). Biochem. Eng. J., 31(3), 204–215.spa
dc.relation.referencesJ W. & JR W. (n.d.). Control de la calidad del agua, Procesos Fisicoquímicos (pp. 210–211). Reverté S.A.spa
dc.relation.referencesJeffords D., Lance P. & Dewolf W. (1977). Severe Hypertensive Reaction to Indigo Carmin. Urology, 9(2), 180–181.spa
dc.relation.referencesJi J., Zhang G., Chen H., Wang S., Zhang G., Zhang F. & Fan X. (2011). Sulfonated graphene as water-tolerant solid acid catalyst. Chem.Sci, 2, 484–487.spa
dc.relation.referencesJoulain D. (1996). Investigating new essential oils: rationale, results and limitations. Perfum. Flavorist, 21(2), 1–10.spa
dc.relation.referencesKanaoka S. & Aoshima S. (2012). Cationic Polymerization of Polar Monomers. Polymer Science: A Comprehensive Reference (Vol. 3).spa
dc.relation.referencesKarcher S., Kornmüller A. & Jekel M. (2001). Screening of commercial sorbents for the removal of reactive dyes. Dye. Pigment., 51, 111–125.spa
dc.relation.referencesKhan S. B., Ali F., Kamal T., Anwar Y., Asiri A. M. & Seo J. (2016). CuO embedded chitosan spheres as antibacterial adsorbent for dyes. Int. J. Biol. Macromol., 88, 113–119.spa
dc.relation.referencesKiurski J., Adamovic S., Oros I., Krstic J. & Kovacevic I. (2012). Adsorption feasibility in the Cr(Total) ions removal from waste printing developer. Global NEST Journal, 14(1), 18–23.spa
dc.relation.referencesKoo J. H. & Pilato L. A. (2005). Polymer nanostructured materials for high temperature applications. Sampe Journal, 41(2), 7–19.spa
dc.relation.referencesKosalec I., Pepeljnjak S. & Kustrak D. (2005). Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta. Pharm, 55(4), 377–385.spa
dc.relation.referencesKricheldorf H., Nuyken O. & Swift G. (2005). Handbook of Polymer Synthesis (2nd ed.). New York: Marcel Dekker.spa
dc.relation.referencesKruse T. M., Wong H. & Broadbelt L. J. (2003). Modeling the Evolution of the Full Polystyrene Molecular Weight Distribution during Polystyrene Pyrolysis. Ind. Eng. Chem, 42, 2722–2735.spa
dc.relation.referencesKrysztafkiewicz A., Binkowski S. & Jesionowski T. (2002). Adsorption of dyes on a silica surface. Appl. Surf. Sci., 199, 31–39.spa
dc.relation.referencesKucera F. & Jancar J. (1996). Preliminary Study of Sulfonation of Polystyrene by Homogeneous and Heterogeneous Reaction. Chem. Pap., 50(4), 224–227.spa
dc.relation.referencesKucera F. & Jancar J. (1998). Homogeneous and Heterogeneous Sulfonation of Polymers: A Reviw. Polym. Eng. Sci, 38(5), 783–792.spa
dc.relation.referencesLee C. K., Liu S. S., Juang L. C., Wang C. C., Lin K. S. & Lyu M. Du. (2007). Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mater., 147(3), 997–1005.spa
dc.relation.referencesLevine W. G. (1991). Metabolism of AZO Dyes : Implication for Detoxication and Activation. Drug Metabolism Reviews, 23, 253–309.spa
dc.relation.referencesLimousin G., Gaudet J., Charlet L., Szenknect S., Barthes V. & Krimissa M. (2007). Sorption isotherms : A review on physical bases , modeling and measurement. Appl. Geochemistry, 22, 249–275.spa
dc.relation.referencesLinstromberg W. (1979). El color en los compuestos orgánicos colorantes. In Curso Breve de Química Orgánica (pp. 475–483). España.spa
dc.relation.referencesLiu L., Gao Z. Y., Su X. P., Chen X., Jiang L. & Yao J. M. (2015). Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain. Chem. Eng., 3(3), 432–442.spa
dc.relation.referencesLiu Z., Qi Y., Gui M., Feng C., Wang X. & Lei Y. (2019). Sulfonated carbon derived from the residue obtained after recovery of essential oil from the leaves of Cinnamomum longepaniculatum using Brønsted acid ionic liquid , and its use in the preparation of ellagic acid and gallic acid. RSC. Adv, 9, 5142–5150.spa
dc.relation.referencesLucchesi M. E., Chemat F. & Smadja J. (2004). An original solvent free microwave extraction of essential oils from spices. Flavour Fragr. J., 19(2), 134–138.spa
dc.relation.referencesManning B. W., Cerniglia C. E. & Federle T. W. (1985). Metabolism of the benzidine-based azo dye direct black 38 by human intestinal microbiota. Appl. Environ. Microbiol., 50(1), 10–15.spa
dc.relation.referencesMasel R. (1951). Principles of adsorption and reaction on solid surfaces (first). United States of America: A Wiley Interscience Publication.spa
dc.relation.referencesMatyjaszewski K. (1996). Cationic Polymerizations Mechanisms, Synthesis and Applications. New York: Marcel Dekker.spa
dc.relation.referencesMatyjaszewski K. & Lin C.-H. (1991). Cationic Polymerization of Styrenes by Activated Covalent Species. Direct H-NMR Observation of Complexes of 1 -Phenylethyl Acetates with Lewis Acids. J Polym Sci A Polym Chem., 29, 1439–1446.spa
dc.relation.referencesMöller M. (2012). Polymer Synthesis. In Polymer Science: A comprehensive Reference (primera, pp. 31–36). Krzysztof Matyjaszewski.spa
dc.relation.referencesMorrison R. T. & Boyd R. N. (n.d.). Sustitución electrófilica aromática. In Química Orgánica (5th ed., p. 500). New York: Pearson Educación.spa
dc.relation.referencesNamasivayam C. & Kavitha D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dye. Pigment., 54, 47–58.spa
dc.relation.referencesNamasivayam C., Muniasamy N., Gayatri K., Rani M. & Ranganathan K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour. Technol., 57(1), 37–43.spa
dc.relation.referencesNonoyama Y., Satoh K. & Kamigaito M. (2014). Renewable β-methylstyrenes for bio-based heat-resistant styrenic copolymers: radical copolymerization enhanced by fluoroalcohol and controlled/living copolymerization by RAFT. Polymer. Chem, 5, 3182–3189.spa
dc.relation.referencesOECD. (2014). OECD Environmental Performance Reviews: Colombia 2014. OECD Environmental Performance Reviews.spa
dc.relation.referencesOgugbue C. J. & Sawidis T. (2011). Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent. Biotechnol . Res. Int., 1–12.spa
dc.relation.referencesOjedokun A. T. & Bello O. (2016). Liquid Phase Adsorption Of Congo Red Dye on Functionalize Corn Cobs. J. Disper. Sci. Technol., 38(9), 1–48.spa
dc.relation.referencesOkeola F. . & Odebunmi E. . (2010). Comparison of Freundlich and Langmuir isotherms for adsorption of methylene blue by agrowaste derived activated carbon. Adv. Environ. Biol., 4(3), 329–335.spa
dc.relation.referencesPadmesh T. V. N., Vijayaraghavan K., Sekaran G. & Velan M. (2005). Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides. J. Hazard. Mater., 125(1–3), 121–129.spa
dc.relation.referencesPalarasah Y., Skjoedt M. O., Vitved L., Andersen T. E., Skjoedt K. & Koch C. (2010). Sodium polyanethole sulfonate as an inhibitor of activation of complement function in blood culture systems. J. Clin. Microbiol., 48(3), 908–914.spa
dc.relation.referencesPalma C., Lloret L., Puen A., Tobar M. & Contreras E. (2016). Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chinese J. Chem. Eng., 24(4), 521–528.spa
dc.relation.referencesPasch H. & Schrepp W. (2003). MALDI-TOF Mass Spectrometry of Synthetic. Board. Germany.spa
dc.relation.referencesPinto Peres B., Santa María L. C. & Sena M. E. (2007). Sulfonated poly (ether imide): A versatile route to prepare functionalized polymers by homogenous sulfonation. Mater. Lett., 61, 2540–2543.spa
dc.relation.referencesPlatzek T., Lang C., Grohmann G., Gi U. S. & Baltes W. (1999). Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Human & Experimental Toxicology, 18(9), 552–559.spa
dc.relation.referencesPorta G. Della, Taddeo R., Urso E. D. & Reverchon E. (1998). Isolation of Clove Bud and Star Anise Essential Oil by Supercritical CO2 Extraction. Lebensm.-Wiss. u.-Technol, 31, 454–460.spa
dc.relation.referencesR J. C. (2004). Ministerio de medio ambiente 3285, 6494–6515.spa
dc.relation.referencesR L. & Raj S. (2008). Bio-decolourization of textile effluent containing Reactive Black-B by effluent-adapted and non-adapted bacteria. Afr J Biotechnol, 7(18), 3309–3313.spa
dc.relation.referencesRäder H. & Schrepp W. (1998). MALDI-TOF mass spectrometry in the analysis of synthetic polymers. Acta Polymer, 49, 272–293.spa
dc.relation.referencesRamón J. A., Amaya J. D. & Losada L. M. (2013). Degradación Fotocatalitica De Rojo Congo En Un Colector Parabolico Solar Y Dióxido De Titanio En Suspensión. Rev. Invest. Univ. Quindío, 24(1), 71–83.spa
dc.relation.referencesRaza S., Yong X., Yang B., Xu R. & Deng J. (2017). Biomass trans-Anethole-Based Hollow Polymer Particles: Preparation and Application as Sustainable Absorbent. ACS Sustain. Chem. Eng., 5(11), 10011–10018.spa
dc.relation.referencesReddy S. (2006). Removal of direct dye from aqueous solutions with an adsorbent made from tamarind fruit shell, an agricultural solid waste. J. Sci. Ind. Res., 65(5), 443–446.spa
dc.relation.referencesRehman M. S. U., Kim I. & Han J. I. (2012). Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydr. Polym., 90(3), 1314–1322.spa
dc.relation.referencesRobinson T., McMullan G., Marchant R. & Nigam P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77(3), 247–255.spa
dc.relation.referencesRojo L. (2008). Derivados Poliméricos de Eugenol para Aplicaciones Biomédicas. Universidad Complutense de Madrid.spa
dc.relation.referencesRouguerol F., Rouquerol J., Llewelly P. & Maurin G. (2014). General Definitions and Terminology. In Adsorption by powders and porous solids principles, methodology and applications (2nd ed., pp. 6–11). Marseille: Elsevier.spa
dc.relation.referencesRubín E., Rodríguez P., Herrero R. & Sastre de Vicente M. E. (2010). Adsorption of Methylene Blue on Chemically Modified Algal Biomass: Equilibrium, Dynamic, and Surface Data. J. Chem. Eng. Data, 55(12), 5707–5714.spa
dc.relation.referencesSalleh M. A. M., Mahmoud D. K., Karim W. A. W. A. & Idris A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.spa
dc.relation.referencesSaratale R. G., Saratale G. D., Chang J. S. & Govindwar S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng., 42(1), 138–157.spa
dc.relation.referencesSatoh K. (2015). Controlled / living polymerization of renewable vinyl monomers into bio-based polymers. Polymer Journal, 1–10.spa
dc.relation.referencesSatoh K., Saitoh S. & Kamigaito M. (2007). A linear lignin analogue: Phenolic alternating copolymers from naturally occurring p-methylstyrene via aqueous-controlled cationic copolymerization. J. Am. Chem. Soc., 129(31), 9586–9587.spa
dc.relation.referencesSenthil Kumar P., Ramalingam S., Senthamarai C., Niranjanaa M., Vijayalakshmi P. & Sivanesan S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261(1–2), 52–60.spa
dc.relation.referencesShaffer T. (1997). Kinetics of Carbocationic Polymerizations: Initiation, Propagation, and Transfer Steps. In Carbocationic Polymerization: A Rejuvenation (pp. 1–11).spa
dc.relation.referencesShahat A. A., Ibrahim A. Y., Hendawy S. F., Omer E. A., Hammouda F. M., Abdel-Rahman F. H. & Saleh M. A. (2011). Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules, 16(2), 1366–1377.spa
dc.relation.referencesSharma Y. C., Uma & Upadhyay S. N. (2009). Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy and Fuels, 23(6), 2983–2988.spa
dc.relation.referencesSilverstein R. M., Webster F. X. & Kiemle D. J. (n.d.). Infrared spectrometry. In Spectrometric identification or organic compounds (7th ed., pp. 106–107).spa
dc.relation.referencesSiti Maryam R. & Shaliza I. (2010). Adsorption of textile reactive dye by palm shell activated carbon: Response Surface Methodology. Int. J. Mater. Text. Eng, 4(7), 441–444.spa
dc.relation.referencesSmitha B., Sridhar S. & Khan A. A. (2003). Synthesis and characterization of proton conducting polymer membranes for fuel cells. J. Membrane Sci. Technol., 225, 63–76.spa
dc.relation.referencesStylianou M. A., Inglezakis V. J., Moustakas K. G., Malamis S. P. & Loizidou M. D. (2007). Removal of Cu ( II ) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents. Desalination, 215, 133–142.spa
dc.relation.referencesSwamy M. K., Akhtar M. S. & Sinniah U. R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action : An Updated Review. Hindawi Publishing, 1–22.spa
dc.relation.referencesTanada S., Kabayama M., Kawasaki N., Sakiyama T., Nakamura T., Araki M. & Tamura T. (2003). Removal of phosphate by aluminum oxide hydroxide. J. Colloid Interface Sci., 257, 135–140.spa
dc.relation.referencesTheivarasu C., Mylsamy S. & Sivakumar N. (2011). Cocoa Shell as Adsorbent for the Removal of Methylene Blue from Aqueous Solution : Kinetic and Equilibrium Study. Univers. j. Environ. Res., 1, 70–78.spa
dc.relation.referencesThornton Morrison R. & Neilson Boyd R. (1998). Química Orgánica (5th ed.). Pearson Educación.spa
dc.relation.referencesTuan D. Q. & Ilangantileke S. G. (1997). Liquid CO2 extraction of essential oil from star anise fruits (Illicium verum H.). J. Food Eng., 31(1), 47–57.spa
dc.relation.referencesVaishali J. & Pullela S. (2005). Rapid and easy identification of Illicium verum Hook. f. and its adulterant Illicium anisatum Linn. by fluorescent microscopy and gas chromatography. J. AOAC Int., 88(3), 703–706.spa
dc.relation.referencesVan Den Hul H. J. & Lyklema J. (1968). Determination of Specific Surface Areas of Dispersed Materials. Comparison of the Negative Adsorption Method with Some Other Methods. J. Am. Chem. Soc., 90(12), 3010–3015.spa
dc.relation.referencesVerma A. K., Dash R. R. & Bhunia P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage., 93(1), 154–168.spa
dc.relation.referencesVillegas E. (2012). Caracterización de polímeros aplicando el método termogravimétrico. Métodos y Mater., 2, 25–32.spa
dc.relation.referencesWang C., LI J., Wang L., Sun X. & Huang J. (2009). Adsorption of Dye from Wastewater by Zeolites Synthesized from Fly Ash: Kinetic and Equilibrium Studies. Chinese J. Chem. Eng. Technol., 17(3), 513–521.spa
dc.relation.referencesWang W., Huang G., An C., Xin X., Zhang Y. & Liu X. (2017). Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies. Appl. Surf. Sci., 405(31), 119–128.spa
dc.relation.referencesWeglarz-Tomczak E. & Gorecki L. (2012). Azo dyes - Biological activity and synthetic strategy. Chemik, 66(12), 1298–1307.spa
dc.relation.referencesWeiss R., Sen A., Willis C. & Pottick L. (1991). Block copolymer ionomers : 1. Synthesis and physical properties of sulphonated poly(styrene-ethylene/butylene-styrene). Polymer, 32(10), 1867–1874.spa
dc.relation.referencesYong X. & Deng J. (2016). Biomass trans-anethole-based heat-resistant copolymer microspheres: Preparation and thermostability. Mater. Today Commun., 9, 60–66.spa
dc.relation.referencesYuan Y., Yong X., Zhang H. & Deng J. (2016). Biobased Microspheres Consisting of Poly(trans-anethole-co-maleic anhydride) Prepared by Precipitation Polymerization and Adsorption Performance. ACS Sustain. Chem. Eng., 4(3), 1446–1453.spa
dc.relation.referencesZaharia C., Suteu D., Muresan A. & Popescu A. (2009). Textile Wastewater Treatment by Homogeneous Oxidation with Hydrogen Peroxide. Environ. Eng. Manag. J., 8(6), 1359–1369.spa
dc.relation.referencesZhou K., Zhang Q., Wang B., Liu J., Wen P., Gui Z. & Hu Y. (2014). The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites. J. Clean. Prod., 1–9.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordAnetholespa
dc.subject.keywordStar anise essential oilspa
dc.subject.keywordDye adsorptionspa
dc.subject.keywordCationic polymerizationspa
dc.subject.keywordSulfonationspa
dc.subject.lembAdsorbentesspa
dc.subject.lembPolimerizaciónspa
dc.subject.lembPurificación de aguas residualesspa
dc.subject.lembSulfonaciónspa
dc.subject.proposalAnetolspa
dc.subject.proposalAceite esencial del anís estrelladospa
dc.subject.proposalAdsorción de colorantesspa
dc.subject.proposalPolimerización catiónicaspa
dc.subject.proposalSulfonaciónspa
dc.titleDiseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantesspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2019SantosCamila.pdf
Tamaño:
2.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2019SantosCamila1.pdf
Tamaño:
237.99 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación facultad
Thumbnail USTA
Nombre:
2019SantosCamila2.pdf
Tamaño:
686.51 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de confidencialidad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: