A bioinspired methodology based on an artificial immune system for damage detection in structural health monitoring

dc.contributor.authorAnaya, Maribelspa
dc.contributor.authorTibaduiza, Diego A.spa
dc.contributor.authorPozo, Francescspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-01-16T22:12:19Zspa
dc.date.available2020-01-16T22:12:19Zspa
dc.date.issued2015-05spa
dc.description.abstractAmong all the aspects that are linked to a structural health monitoring (SHM) system, algorithms, strategies, or methods for damage detection are currently playing an important role in improving the operational reliability of critical structures in several industrial sectors. This paper introduces a bioinspired strategy for the detection of structural changes using an artificial immune system (AIS) and a statistical data-driven modeling approach by means of a distributed piezoelectric active sensor network at different actuation phases. Damage detection and classification of structural changes using ultrasonic signals are traditionally performed using methods based on the time of flight. The approach followed in this paper is a data-based approach based on AIS, where sensor data fusion, feature extraction, and pattern recognition are evaluated. One of the key advantages of the proposed methodology is that the need to develop and validate a mathematical model is eliminated. The proposed methodology is applied, tested, and validated with data collected from two sections of an aircraft skin panel. The results show that the presented methodology is able to accurately detect damage.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1155/2015/648097spa
dc.identifier.urihttp://hdl.handle.net/11634/20598
dc.relation.referencesP. J. C. Branco, J. A. Dente, and R. V. Mendes, “Using immunology principles for fault detection,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 362–373, 2003spa
dc.relation.referencesS. da Silva, M. Dias Jr., and V. Lopes Jr., “Damage detection in a benchmark structure using AR-ARX models and statistical pattern recognition,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 29, no. 2, pp. 174–184, 2007.spa
dc.relation.referencesS. da Silva, M. Dias Junior, V. Lopes Junior, and M. J. Brennan, ´ “Structural damage detection by fuzzy clustering,” Mechanical Systems and Signal Processing, vol. 22, no. 7, pp. 1636–1649, 2008.spa
dc.relation.referencesJ. Zhang, K. Worden, and W. J. Staszewski, “Sensor optimisation using an immune system metaphor,” in Proceedings of the 26th International Modal Analysis Conference (IMAC ’08), 2008.spa
dc.relation.referencesJ. R. Vieira de Moura Jr., S. Park, V. Steffen Jr., and D. J. Inman, “Fuzzy logic applied to damage characterization through SHM techniques,” in Proceedings of the International Modal Analysis Conference, Society for Experimental Mechanics Series, 2008.spa
dc.relation.referencesB. Chen, “Agent-based artificial immune system approach for adaptive damage detection in monitoring networks,” Journal of Network and Computer Applications, vol. 33, no. 6, pp. 633–645, 2010.spa
dc.relation.referencesD. Tan, W. Qu, and J. Tu, “The damage detection based on the fuzzy clustering and support vector machine,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (ISDEA ’10), pp. 598–601, Changsha, China, October 2010.spa
dc.relation.referencesB. Chen and C. Zang, “Emergent damage pattern recognition using immune network theory,” Smart Structures and Systems, vol. 8, no. 1, pp. 69–92, 2011.spa
dc.relation.referencesZ. Chilengue, J. A. Dente, and P. J. C. Branco, “An artificial immune system approach for fault detection in the stator and rotor circuits of induction machines,” Electric Power Systems Research, vol. 81, no. 1, pp. 158–169, 2011.spa
dc.relation.referencesY. Zhou, S. Tang, C. Zang, and R. Zhou, “An artificial immune pattern recognition approach for damage classification in structures,” in Advances in Information Technology and Industry Applications, vol. 136 of Lecture Notes in Electrical Engineering, pp. 11–17, Springer, 2012.spa
dc.relation.referencesW. Xiao, Structural health monitoring and fault diagnosis based on artificial immune system [Ph.D. thesis], Worcester Polytechnic Institute, 2012.spa
dc.relation.referencesZ. Liu, Q. Zhou, Q. Chi, Y. Zhang, Y. Chen, and S. Qi, “Structural damage detection based on semi-supervised fuzzy C-means clustering,” in Proceedings of the 9th International Conference on Computer Science & Education (ICCSE ’14), pp. 551–556, IEEE, August 2014.spa
dc.relation.referencesY. Huang, L. Gong, S. Wang, and L. Li, “A fuzzy based semi-supervised method for fault diagnosis and performance evaluation,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM ’14), pp. 1647–1651, Besanc¸on, France, July 2014.spa
dc.relation.referencesM. Anaya, D. Tibaduiza, and F. Pozo, “Data-driven methodology based on artificial immune system for damage detection,” in Proceedings of the 7th European Workshop on Structural Health Monitoring (EWSHM ’14), V. Le Cam, L. Melvel, and F. Schoefs, Eds., pp. 1341–1348, 2014.spa
dc.relation.referencesL. N. de Castro and J. Timmis, “Artificial immune systems: a novel approach to pattern recognition,” in Artificial Neural Networks in Pattern Recognition, pp. 67–84, University of Paisley, 2002.spa
dc.relation.referencesA. K. Eroglu, Z. Erden, and A. Erden, “Bioinspired conceptual design (BICD) approach for hybrid Bioinspired robot design process,” in Proceedings of the IEEE International Conference on Mechatronics (ICM ’11), pp. 905–910, April 2011.spa
dc.relation.referencesN. Cruz Cortes, ´ Sistema inmune artificial para solucionar problemas de optimizacion [Ph.D. thesis] ´ , Centro de Investigacion y ´ de Estudios Avanzados del Instituto Politecnico Nacional, 2004.spa
dc.relation.referencesP. J. Delves, S. J. Martin, D. R. Burton, and I. M. Roitt, Roitt’s Essential Immunology, Wiley-Blackwell, 2011.spa
dc.relation.referencesL. N. de Castro and F. J. Von Zuben, “Artificial immune systems: part I basic theory and applications,” Tech. Rep. DCA-RT 01/99, School of Computing and Electrical Engineering, State University of Campinas, Campinas, Brazil, 1999.spa
dc.relation.referencesD. T. Perez, ´ Optimizacion global en espacios restringidos medi- ´ ante un sistema inmune artificial [M.S. thesis], Centro de Investigacion y de Estudios Avanzados del Instituto Polit ´ ecnico ´ Nacional, Mexico City, Mexico, 2005.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordImmune Systemspa
dc.subject.keywordHealth Monitoringspa
dc.subject.keywordDamage Detectionspa
dc.titleA bioinspired methodology based on an artificial immune system for damage detection in structural health monitoringspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
A bioinspired methodology based on an artificial immune system for damage detection in structural health monitoring.pdf
Tamaño:
2.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: