A bioinspired methodology based on an artificial immune system for damage detection in structural health monitoring
dc.contributor.author | Anaya, Maribel | spa |
dc.contributor.author | Tibaduiza, Diego A. | spa |
dc.contributor.author | Pozo, Francesc | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-01-16T22:12:19Z | spa |
dc.date.available | 2020-01-16T22:12:19Z | spa |
dc.date.issued | 2015-05 | spa |
dc.description.abstract | Among all the aspects that are linked to a structural health monitoring (SHM) system, algorithms, strategies, or methods for damage detection are currently playing an important role in improving the operational reliability of critical structures in several industrial sectors. This paper introduces a bioinspired strategy for the detection of structural changes using an artificial immune system (AIS) and a statistical data-driven modeling approach by means of a distributed piezoelectric active sensor network at different actuation phases. Damage detection and classification of structural changes using ultrasonic signals are traditionally performed using methods based on the time of flight. The approach followed in this paper is a data-based approach based on AIS, where sensor data fusion, feature extraction, and pattern recognition are evaluated. One of the key advantages of the proposed methodology is that the need to develop and validate a mathematical model is eliminated. The proposed methodology is applied, tested, and validated with data collected from two sections of an aircraft skin panel. The results show that the presented methodology is able to accurately detect damage. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.1155/2015/648097 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/20598 | |
dc.relation.references | P. J. C. Branco, J. A. Dente, and R. V. Mendes, “Using immunology principles for fault detection,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 362–373, 2003 | spa |
dc.relation.references | S. da Silva, M. Dias Jr., and V. Lopes Jr., “Damage detection in a benchmark structure using AR-ARX models and statistical pattern recognition,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 29, no. 2, pp. 174–184, 2007. | spa |
dc.relation.references | S. da Silva, M. Dias Junior, V. Lopes Junior, and M. J. Brennan, ´ “Structural damage detection by fuzzy clustering,” Mechanical Systems and Signal Processing, vol. 22, no. 7, pp. 1636–1649, 2008. | spa |
dc.relation.references | J. Zhang, K. Worden, and W. J. Staszewski, “Sensor optimisation using an immune system metaphor,” in Proceedings of the 26th International Modal Analysis Conference (IMAC ’08), 2008. | spa |
dc.relation.references | J. R. Vieira de Moura Jr., S. Park, V. Steffen Jr., and D. J. Inman, “Fuzzy logic applied to damage characterization through SHM techniques,” in Proceedings of the International Modal Analysis Conference, Society for Experimental Mechanics Series, 2008. | spa |
dc.relation.references | B. Chen, “Agent-based artificial immune system approach for adaptive damage detection in monitoring networks,” Journal of Network and Computer Applications, vol. 33, no. 6, pp. 633–645, 2010. | spa |
dc.relation.references | D. Tan, W. Qu, and J. Tu, “The damage detection based on the fuzzy clustering and support vector machine,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (ISDEA ’10), pp. 598–601, Changsha, China, October 2010. | spa |
dc.relation.references | B. Chen and C. Zang, “Emergent damage pattern recognition using immune network theory,” Smart Structures and Systems, vol. 8, no. 1, pp. 69–92, 2011. | spa |
dc.relation.references | Z. Chilengue, J. A. Dente, and P. J. C. Branco, “An artificial immune system approach for fault detection in the stator and rotor circuits of induction machines,” Electric Power Systems Research, vol. 81, no. 1, pp. 158–169, 2011. | spa |
dc.relation.references | Y. Zhou, S. Tang, C. Zang, and R. Zhou, “An artificial immune pattern recognition approach for damage classification in structures,” in Advances in Information Technology and Industry Applications, vol. 136 of Lecture Notes in Electrical Engineering, pp. 11–17, Springer, 2012. | spa |
dc.relation.references | W. Xiao, Structural health monitoring and fault diagnosis based on artificial immune system [Ph.D. thesis], Worcester Polytechnic Institute, 2012. | spa |
dc.relation.references | Z. Liu, Q. Zhou, Q. Chi, Y. Zhang, Y. Chen, and S. Qi, “Structural damage detection based on semi-supervised fuzzy C-means clustering,” in Proceedings of the 9th International Conference on Computer Science & Education (ICCSE ’14), pp. 551–556, IEEE, August 2014. | spa |
dc.relation.references | Y. Huang, L. Gong, S. Wang, and L. Li, “A fuzzy based semi-supervised method for fault diagnosis and performance evaluation,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM ’14), pp. 1647–1651, Besanc¸on, France, July 2014. | spa |
dc.relation.references | M. Anaya, D. Tibaduiza, and F. Pozo, “Data-driven methodology based on artificial immune system for damage detection,” in Proceedings of the 7th European Workshop on Structural Health Monitoring (EWSHM ’14), V. Le Cam, L. Melvel, and F. Schoefs, Eds., pp. 1341–1348, 2014. | spa |
dc.relation.references | L. N. de Castro and J. Timmis, “Artificial immune systems: a novel approach to pattern recognition,” in Artificial Neural Networks in Pattern Recognition, pp. 67–84, University of Paisley, 2002. | spa |
dc.relation.references | A. K. Eroglu, Z. Erden, and A. Erden, “Bioinspired conceptual design (BICD) approach for hybrid Bioinspired robot design process,” in Proceedings of the IEEE International Conference on Mechatronics (ICM ’11), pp. 905–910, April 2011. | spa |
dc.relation.references | N. Cruz Cortes, ´ Sistema inmune artificial para solucionar problemas de optimizacion [Ph.D. thesis] ´ , Centro de Investigacion y ´ de Estudios Avanzados del Instituto Politecnico Nacional, 2004. | spa |
dc.relation.references | P. J. Delves, S. J. Martin, D. R. Burton, and I. M. Roitt, Roitt’s Essential Immunology, Wiley-Blackwell, 2011. | spa |
dc.relation.references | L. N. de Castro and F. J. Von Zuben, “Artificial immune systems: part I basic theory and applications,” Tech. Rep. DCA-RT 01/99, School of Computing and Electrical Engineering, State University of Campinas, Campinas, Brazil, 1999. | spa |
dc.relation.references | D. T. Perez, ´ Optimizacion global en espacios restringidos medi- ´ ante un sistema inmune artificial [M.S. thesis], Centro de Investigacion y de Estudios Avanzados del Instituto Polit ´ ecnico ´ Nacional, Mexico City, Mexico, 2005. | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Immune System | spa |
dc.subject.keyword | Health Monitoring | spa |
dc.subject.keyword | Damage Detection | spa |
dc.title | A bioinspired methodology based on an artificial immune system for damage detection in structural health monitoring | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- A bioinspired methodology based on an artificial immune system for damage detection in structural health monitoring.pdf
- Tamaño:
- 2.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo SCOPUS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: