Construyendo la Energía sostenible en Colombia

dc.contributor.authorRodríguez Amaya, Alejandrospa
dc.contributor.authorSierra Alarcón, Adriana Fernandaspa
dc.contributor.authorOrtiz Castillo, Danielaspa
dc.contributor.authorGaona-Corral, Luis Andrésspa
dc.contributor.authorGómez-Torres, Luisa Marinaspa
dc.contributor.authorGarzón Cortés, Giovanna del pilarspa
dc.contributor.authorMarín Martínez, Diego Alejandrospa
dc.contributor.authorCastiblanco Garzón, Cristian Leonardospa
dc.contributor.authorOrtiz Yepes, Nathaliespa
dc.contributor.authorLuque Bernal, Gabriel Santiagospa
dc.contributor.authorOspina Molina, Jonathanspa
dc.contributor.authorMedina Gamba, Andrés Felipespa
dc.contributor.authorGuevara Umaña, Andrés Ricardospa
dc.contributor.authorAparicio Gallo, Andreaspa
dc.contributor.authorSuesca Díaz, Adrianaspa
dc.contributor.authorQuevedo Hidalgo, Balkys Esmeraldaspa
dc.contributor.authorVelásquez Lozano, Mario Enriquespa
dc.contributor.authorBonilla-Páez, Javier Alejandrospa
dc.contributor.authorLópez Santamaría, Camilo Andrésspa
dc.contributor.authorHernández Solórzano, Laura Carolinaspa
dc.contributor.authorMayorga Betancourt, Manuel Alejandrospa
dc.contributor.authorPerdomo Morales, Laura Danielaspa
dc.contributor.authorVargas Sáenz, Julio Cesarspa
dc.contributor.authorNarváez Rincón, Paulo Cesarspa
dc.contributor.authorCadavid Estrada, Juan Guillermospa
dc.contributor.authorCastellanos Niño, Carlos Juliospa
dc.contributor.authorAlbarracín Norena, Ana Maríaspa
dc.contributor.authorSuarez Palacios, Oscar Yesidspa
dc.contributor.authorCadavid Estrada, Juan Guillermospa
dc.contributor.authorGonzález Carmona, Jair Orlandospa
dc.contributor.authorMartínez Saavedra, José Mateospa
dc.contributor.authorTrujillo, Carlos Alexanderspa
dc.contributor.authorBernal Bermúdez, Andrés Davidspa
dc.contributor.authorBlanco Gómez, María Alejandraspa
dc.contributor.authorMalagón Romero, Dionisio Humbertospa
dc.contributor.authorCuesta, Dianaspa
dc.contributor.authorLozano Florez, Danielspa
dc.contributor.authorPaez Morales, Adriana Inesspa
dc.contributor.authorFuentes Velandia, Juan de Diosspa
dc.contributor.authorOrjuela Cañón, Álvaro Davidspa
dc.contributor.authorTangarife Escobar, Héctor Ivánspa
dc.contributor.authorGómez, Luis-Clavijo Andrésspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001579173spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000982431spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000956090spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895342spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000875910spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001343767spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000162655spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000057932spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001567062spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001370447spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001403214spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000947229spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167150spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000105899spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000105961spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000575283spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000105961spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000027200spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001184784spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000376140spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000627046spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001415023spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=nL4pzJYAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=eGfZK3oAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=gCI5rpQAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=u_Eyf5YAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.ch/citations?user=L-LltmAAAAAJ&hl=enspa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=EbODLxcAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=ytyjO5EAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=xTHjn5YAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=ynsiIEsAAAAJspa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=IedqDeEAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=us9b9-EAAAAJ&hl=esspa
dc.contributor.gruplachttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000007939spa
dc.contributor.orcidhttps://orcid.org/0000-0002-9666-1246spa
dc.contributor.orcidhttps://orcid.org/0000-0002-9964-6009spa
dc.contributor.orcidhttps://orcid.org/0000-0003-0839-4190spa
dc.contributor.orcidhttps://orcid.org/0000-0002-4700-5939spa
dc.contributor.orcidhttps://orcid.org/0000-0002-9875-2221spa
dc.contributor.orcidhttps://orcid.org/0000-0003-2202-740Xspa
dc.contributor.orcidhttps://orcid.org/0000-0001-6207-8338spa
dc.contributor.orcidhttps://orcid.org/0000-0003-1888-2315spa
dc.contributor.orcidhttps://orcid.org/0000-0003-4865-4540spa
dc.contributor.orcidhttps://orcid.org/0000-0002-3890-908Xspa
dc.contributor.orcidhttps://orcid.org/0000-0003-1854-7007spa
dc.contributor.orcidhttps://orcid.org/0000-0002-3890-908Xspa
dc.contributor.orcidhttps://orcid.org/0000-0001-6204-2378spa
dc.contributor.orcidhttps://orcid.org/0000-0001-6990-8007spa
dc.contributor.orcidhttps://orcid.org/0000-0003-2890-2180spa
dc.contributor.orcidhttps://orcid.org/0000-0003-1320-2288spa
dc.contributor.orcidhttps://orcid.org/0000-0002-2898-9063spa
dc.contributor.orcidhttps://orcid.org/0000-0002-2057-7603spa
dc.contributor.orcidhttps://orcid.org/0000-0002-9416-385Xspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-06-26T23:06:10Zspa
dc.date.available2020-06-26T23:06:10Zspa
dc.date.issued2018spa
dc.descriptionLas políticas energéticas nacionales han sido enfocadas hacia el desarrollo sostenible, lo que ha permitido generar procesos de colaboración e integración de distintos sectores tanto académicos como industriales, este aporte ha logrado construir y consolidar alianzas estratégicas. Este libro constituye un aporte a la construcción de dichas alianzas, donde la investigación y la academia se ponen en contacto y en un contexto nacional en la búsqueda de soluciones a problemáticas energéticas actuales, reforzando la integración de sectores Colombianos. Históricamente el aprovechamiento de la energía ha estado ligado al crecimiento económico y social promoviendo de ese modo el desarrollo de la humanidad. Conforme la tasa de crecimiento poblacional se ha acelerado, el consumo de energía ha incrementado. En los últimos años la canasta energética se ha visto ensanchada por el uso de energías renovables, principalmente de tipo solar, con lo cual el impacto en el ambiente podría disminuir en el corto plazo. Es de esperarse que el impulso dado por la Ley 1715 de 2014 contribuya a la generación de nuevas alternativas energéticas que contribuyan con la sostenibilidad. Finalmente, el aporte que cada uno realiza al sostenimiento energético termina siendo un aporte a la supervivencia propia y del resto de la especie. De no lograrse el sostenimiento energético, el calentamiento global y el aumento dela contaminación ambiental cobrarán la existencia como especie de la más débil de ellas: la humana.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRodríguez Amaya, Alejandro Sierra Alarcón, Adriana Fernanda Ortiz Castillo, Daniela Gaona-Corral, Luis Andrés Gómez-Torres, Luisa Marina Garzón Cortés, Giovanna del pilar Marín Martínez, Diego Alejandro Castiblanco Garzón, Cristian Leonardo Ortiz Yepes, Nathalie Luque Bernal, Gabriel Santiago Ospina Molina, Jonathan Medina Gamba, Andrés Felipe Guevara Umaña, Andrés Ricardo Aparicio Gallo, Andrea Suesca Díaz, Adriana Quevedo Hidalgo, Balkys Esmeralda Velásquez Lozano, Mario Enrique Bonilla-Páez, Javier Alejandro López Santamaría, Camilo Andrés Hernández Solórzano, Laura Carolina Mayorga Betancourt, Manuel Alejandro Perdomo Morales, Laura Daniela Vargas Sáenz, Julio Cesar Narváez Rincón, Paulo Cesar Cadavid Estrada, Juan Guillermo Castellanos Niño, Carlos Julio Albarracín Norena, Ana María Suarez Palacios, Oscar Yesid Cadavid Estrada, Juan Guillermo González Carmona, Jair Orlando Martínez Saavedra, José Mateo Trujillo, Carlos Alexander Bernal Bermúdez, Andrés David Blanco Gómez, María Alejandra Malagón Romero, Dionisio Humberto Cuesta, Diana Lozano Florez, Daniel Paez Morales, Adriana Ines Fuentes Velandia, Juan de Dios Orjuela Cañón, Álvaro David Tangarife Escobar, Héctor Iván Gómez, Luis-Clavijo Andrés. (2018). Construyendo la Energía sostenible en Colombiaspa
dc.identifier.doihttps://doi.org/10.15332/dt.inv.2020.01231spa
dc.identifier.urihttp://hdl.handle.net/11634/27476
dc.relation.referencesUnidad de planeación Minero Energética (UPME), “Informe Mensual de Variables de Generación y del Mercado Eléctrico Colombiano - Diciembre de 2016,” Subdirección Energía Eléctrica - Grup. Generación, no. 69, p. 15, 2016.spa
dc.relation.referencesP. J. Ginter VJ, “Robust gain scheduled control of a hydrokinetic turbine,” Control Syst Technol IEEE Trans, no. 19:805-17, 2011.spa
dc.relation.referencesM. I. Yuce and A. Muratoglu, “Hydrokinetic ener- gy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015.spa
dc.relation.referencesE. D. Roberto Ortiz, “Diseño de una turbina hi- drocinética de eje horizontal para microgeneración de energía eléctrica,” Universidad Santo Tomás, 2017.spa
dc.relation.referencesM. Ghasemian, Z. N. Ashrafi, and A. Sedaghat, “A review on computational fluid dynamic simulation te- chniques for Darrieus vertical axis wind turbines,” Ener- gy Convers. Manag., vol. 149, pp. 87–100, 2017.spa
dc.relation.referencesC. Daskiran, J. Riglin, W. Schleicher, and A. Ozte- kin, “Transient analysis of micro-hydrokinetic turbines for river applications,” Ocean Eng., vol. 129, no. Novem- ber 2016, pp. 291–300, 2017.spa
dc.relation.referencesJ. Riglin, F. Carter, N. Oblas, W. C. Schleicher, C. Daskiran, and A. Oztekin, “Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications,” Renew. Energy, vol. 99, pp. 772–783, 2016.spa
dc.relation.referencesJ. Riglin, F. Carter, N. Oblas, W. C. Schleicher, C. Daskiran, and A. Oztekin, “Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications,” Renew. Energy, vol. 99, pp. 772–783, 2016.spa
dc.relation.referencesA. Muratoglu and M. Ishak Yuce, “Design of a Ri- ver Hydrokinetic Turbine Using Optimization and CFD Simulations,” J. Energy Eng., vol. 143, no. Muratoglu 2014, pp. 1–11, 2017.spa
dc.relation.referencesL. Wang, R. Quant, and A. Kolios, “Fluid structu- re interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA,” J. Wind Eng. Ind. Ae- rodyn., vol. 158, pp. 11–25, 2016.spa
dc.relation.referencesM. H. Giahi and A. Jafarian Dehkordi, “Investiga- ting the influence of dimensional scaling on aerodyna- mic characteristics of wind turbine using CFD simula- tion,” Renew. Energy, vol. 97, pp. 162–168, 2016.spa
dc.relation.referencesD. Vučina, I. Marinić-Kragić, and Z. Milas, “Nu- merical models for robust shape optimization of wind turbine blades,” Renew. Energy, vol. 87, pp. 849–862, 2016.spa
dc.relation.referencesANSYS 18 Theory guide, “ANSYS, A.” Ansys Inc., U.S.A., 2017.spa
dc.relation.referencesW, Schleicher. D. Riglin, A. Oztekin, "“Nume- rical characterization of a preliminary portable micro- hydrokinetic turbine rotor design,” renew Energy, vol. 76, pp. 234–241, 2015.spa
dc.relation.referencesI. S. Stachlewska, M. Costa-Surós, y D. Althau- sen, «Raman lidar water vapor profiling over Warsaw, Poland», Atmospheric Res., vol. 194, pp. 258-267, sep. 2017.spa
dc.relation.referencesC. Landeros-Sánchez, A. García-Saldaña, I. Ni- kolskii-Gavrilov, M. del R. Castañeda-Chávez, J. M. Hernández-Pérez, y G. Sánchez-Ocaña, Tendencias del cambio climático: una revisión. 2016.spa
dc.relation.referencesJ. A. Santiago-Lastra, M. López, y S. López, Ten- dencias del cambio climático global y los eventos ex- tremos asociados. 2018.spa
dc.relation.referencesJ. L. D. Quesada y A. E. de N. y Certificación, Hue- lla ecológica y desarrollo sostenible. AENOR-Asocia- ción Española de Normalización y Certificación, 2009.spa
dc.relation.referencesA. Michopoulos, I. Ziogou, M. Kerimis, y T. Za- chariadis, «A study on hot-water production of hotels in Cyprus: Energy and environmental considerations», Energy Build., vol. 150, pp. 1-12, sep. 2017.spa
dc.relation.referencesConsejería de Economía y Hacienda, Guía Bási- ca de Calderas Industriales Eficientes. Gráficas Arias Montano. S.A., 2012.spa
dc.relation.referencesH. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, y L. L. Baxter, «The implications of chlorine-associated corrosion on the operation of biomass-fired boilers», Prog. Energy Combust. Sci., vol. 26, n.o 3, pp. 283-298, jun. 2000.spa
dc.relation.referencesR. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hos- sain, y S. Mekhilef, «A review on biomass as a fuel for boilers», Renew. Sustain. Energy Rev., vol. 15, n.o 5, pp. 2262-2289, jun. 2011.spa
dc.relation.referencesColombia Ministerio de Medio Ambiente y Desa- rrollo Territorial, «Resolución 909 de 2008 por la cual se establecen las normas y estándares de emisión ad- misibles de contaminantes a la atmósfera por fuentes fijas y se dictan otras disposiciones.» [En línea]. Dispo- nible en: http://www.minambiente.gov.co/images/nor- mativa/app/resoluciones/f0-Resoluci%C3%B3n%20 909%20de%202008%20%20-%20Normas%20y%20es- tandares%20de%20emisi%C3%B3n%20Fuentes%20 fijas.pdf. [Accedido: 10-jul-2018].spa
dc.relation.referencesC. Cardona, D. Sánchez, y O. Sánchez, Análisis de ciclo de vida y su aplicación a la producción de bioe- tanol: Una aproximación cualitativa, vol. 43. 2007.spa
dc.relation.referencesISO, «ISO 14040. Environmental manage- ment-Life cycle assessment-Principles and fra- mework.», Environ. Manag.-Life Cycle Assess.-Princ. Framew. Eur. Comm. Stand., 2006.spa
dc.relation.referencesIHOBE, S.A. Sociedad Pública de Gestión Am- biental, Manual práctico de ecodiseño. Operativa de implantación en 7 pasos. 2000.spa
dc.relation.referencesREN21. (2016). Renewables 2016 Global Status Report. Obtenido de http://www.ren21.net/wp-content/ uploads/2016/05/GSR_2016_Full_Report_lowres.pdfspa
dc.relation.referencesUPME. (2015). Atlas Potencial Hidroenergético de Colombia. Obtenido de http://www1.upme.gov.co/ Documents/Atlas/Atlas_p25-36.pdfspa
dc.relation.referencesPalacios Sierra, R. A. (2013). Inventario Docu- mentado de Represas en Colombia. Obtenido de Re- positorio Universidad Militar Nueva Granada: http://re- pository.unimilitar.edu.co/bitstream/10654/11360/1/ PalaciosSierraRicardoAndres2013.pdfspa
dc.relation.referencesMME & UPME. (2017). Registro de Proyectos de Generación Inscripción según requisitos de las Resolu- ciones UPME No. 0520, No. 0638 de 2007 y No. 0143 de 2016. Obtenido de http://www.siel.gov.co/Genera- cion_sz/Inscripcion/2017/Registro_Proyectos_Gene- racion_Mayo2017.pdfspa
dc.relation.referencesUCA. (2000). Centrales Hidroeléctricas. Obte- nido de Universidad Centroamericana José Simeón Cañas: http://www.uca.edu.sv/facultad/clases/ing/ m200018/doc1.pdfspa
dc.relation.referencesGoldsmith, E., & Hildyard, N. (1984). The social and environmental effects of large dams. Camelford, Cornwall: Wadebridge Ecological Centre.spa
dc.relation.referencesÚsuga Montolla, E. (2014). Impactos sociales y económicos de la hidroeléctrica en Ituango. Obteni- do de Univesridad de Medellín, Facultad de Ciencias Económicas, Administrativas y Contables: http://re- pository.udem.edu.co/bitstream/handle/11407/2154/ TG_AE_3.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesPielke Sr. et al. (2011). Land use/land cover chan- ges and climate: modeling analysis and observational evidence. WIREs Clim Change, 2: 828-850.spa
dc.relation.referencesIglesias Carvajal, S. (2011). Guía de Impacto Ambiental Para Centrales Hidroeléctricas. Obtenido de Universidad Tecnológica de Pereira, Facultad de Tecnología: http://repositorio.utp.edu.co/dspace/bits- tream/handle/11059/2314/3337932I24.pdf;jsessioni- d=F2029B5631750D535EBB673F32390CF3?sequen- ce=1spa
dc.relation.referencesHossain, F., Jeyachandran, I., & Pielke Sr., R. (2010). Dam safety effects due to human alteration of extreme precipitation. WATER RESOURCES RESEARCH, VOL. 46, W03301, doi: 10.1029/2009WR007704.spa
dc.relation.referencesWorld Commission on Dams. (2000). Dams and Development: A New Framework for Decision-Ma- king. London and Sterling, VA: Earthscan Publications Ltd. Obtenido de https://www.internationalrivers.org/ sites/default/files/attached-files/world_commission_ on_dams_final_report.pdfspa
dc.relation.referencesDegu et al. (2011). The influence of large dams on surrounding climate and precipitation pa- tterns. Geophysical Research Letters, 38, L04405, doi:10.1029/2010GL046482.spa
dc.relation.referencesWoldemichael, A., Hossain, F., & Pielke Sr., R. (2014). Evaluation of surface properties and atmos- pheric disturbances caused by post-dam alterations of land use/land cover. Hydrology and Earth System Sciences, 18, 3711–3732.spa
dc.relation.referencesTullos D. et al. (2010). Perspectives on the Sa- lience and Magnitude of Dam Impacts for Hydro Deve- lopment Scenarios in China. Water Alternatives, 3(2): 71-90.spa
dc.relation.referencesKum, Gülşen. (2016). The Influence of Dams on Surrounding Climate: The Case of Keban Dam - Bara- jların Çevre İklime Etkisi: Keban Barajı Örneği. Gazian- tep University Journal of Social Sciences, 15(1):193- 204.spa
dc.relation.referencesMinAmbiente. (26 de Julio de 2017). Resolu- ción 1519 del 2017. Obtenido de Términos de referen- cia EIA: http://www.minambiente.gov.co/images/nor- mativa/app/resoluciones/39RES%201519%20de%20 2017.pdfspa
dc.relation.referencesArango, C., Dorado, J., Guzmán, D., & Ruiz, J. F. (Diciembre de 2012). CAMBIO CLIMÁTIO MÁS PROBA- BLE PARA COLOMBIA A LO LARGO DELSIGLO XXI RES- PECTO AL CLIMA PRESENTE. Obtenido de Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cam- bio Climático; Subdirección de Meteorología – IDEAM: http://www.ideam.gov.co/documents/21021/21138/ Escenarios+Cambio+Climatico+%28Ruiz%2C+Guz- man%2C+Arango+y+Dorado%29.pdf/fe5d64fb-3a82- 4909-a861-7b783d0691cbspa
dc.relation.referencesR Core Team. (2017). R: A language and en- vironment for statistical computing. Obtenido de R Foundation for Statistical Computing, Vienna, Austria: https://www.R-project.org/.spa
dc.relation.referencesCOLA. (2017). The Grid Analysis and Display System (GrADS). Obtenido de Version 2.2.0: http:// cola.gmu.edu/aboutcola.phpspa
dc.relation.referencesPoveda Jaramillo, G. (2006). El Clima de Antio- quia. Escuela de Geociencias y Medio Ambiente Facul- tad de Minas, Universidad Nacional de Colombia, Sede Medellín, 1-17.spa
dc.relation.referencesCORNARE. (Febrero de 2006). Actualización del Plan de Manejo y Ordenamiento de la Cuenca Pozo, Municipios de El Peñol y Marinilla, Antioquia. Obtenido de https://www.cornare.gov.co/POMCAS/Documen- tos/El-Pozo.pdfspa
dc.relation.referencesChow, V., Maidment, R., & Mays, L. (1994). Hi- drología aplicada. Bogotá: McGrawHillspa
dc.relation.referencesHouze, R. A. (1997). Stratiform precipitation in regions of convection. Bull. Amer. Meteor. Soc. Vol 78, 2179-95.spa
dc.relation.referencesSarochar, R. H., Ciappesoni, H. H., & Ruiz, N. E. (2005). Precipitaciones convectivas y estratiformes en la Pampa Húmeda: una aproximación a su separación y aspectos climatológicos de ambas. Meteorológica Vol. 30, 77-88spa
dc.relation.referencesH. Oswaldo, B. Ballesteros, G. Esperanza, and L. Aristizabal, “Información Técnica sobre gases de efec- to invernadero y el cambio climático,” 2007.spa
dc.relation.referencesNaciones Unidas-Asamblea General, “ONU.In- forme Brundtland. (Ago 1987).Informe de la Comisión Mundial sobre Medio Ambiente y Desarrollo,” 1987. [On- line]. Available: https://es.scribd.com/doc/105305734/ ONU-Informe-Brundtland-Ago-1987-Informe-de-la-Co- mision-Mundial-sobre-Medio-Ambiente-y-Desarrollo. [Accessed: 28-Aug-2018].spa
dc.relation.referencesNaciones Unidas, “Report of the World Commis- sion on Environment and Development: Our Common Future - A/42/427 Annex - UN Documents: Gathering a body of global agreements,” 1987. [Online]. Available: http://www.un-documents.net/wced-ocf.htm. [Acces- sed: 28-Aug-2018].spa
dc.relation.referencesE. Alternasindd, “Energías Alternas: Propuesta de Investigación y Desarrollo Tecnológico para México,” 2010.spa
dc.relation.referencesAméricaFotovoltaica, “Energías Renovables Ar- chivos - La Guía Solar,” 2015. [Online]. Available: http:// www.laguiasolar.com/energia-solar/energias-renova- bles/. [Accessed: 27-Aug-2018].spa
dc.relation.referencesPortafolio, “energias renovables en colombia | Innovación | Portafolio,” 2016. [Online]. Available: http://www.portafolio.co/innovacion/energias-renova- bles-en-colombia-502061. [Accessed: 27-Aug-2018].spa
dc.relation.referencesUnidad de planeación minero energética, “Infor- me de Gestión UPME 2017,” 2017.spa
dc.relation.referencesU. De Planeación and M. Energética, “INSTITU- TO DE HIDROLOGÍA, METEOROLOGIA Y ESTUDIO AM- BIENTALES.”spa
dc.relation.references“LEY 142 DE 1994, Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones” Congreso de la República, Santafé de Bogotá, D.C. Diario Oficial No. 41.433 de 11 de julio de 1994.spa
dc.relation.references“LEY 143 DE 1994, Por la cual se establece el régimen para la generación, interconexión, transmi- sión, distribución y comercialización de electricidad en el territorio nacional, se conceden unas autorizaciones y se dictan otras disposiciones en materia energética.” Congreso de la República, Santafé de Bogotá, D.C. Dia- rio Oficial No. 41.434, de 12 de julio de 1994.spa
dc.relation.referencesCámara de Comercio de Cali, “Informes Econó- micos - Bioenergía Iniciativa Cluster,” 2016.spa
dc.relation.references“LEY 629 DE 2000, Por medio de la cual se aprueba el "Protocolo de Kyoto de la Convención Mar- co de las Naciones Unidas sobre el Cambio Climático", hecho en Kyoto el 11 de diciembre de 1997.” Congreso de la República, Bogotá, D.C., Publicada en el Diario Ofi- cial 44.272 de diciembre 27 de 2000.spa
dc.relation.references“LEY 697 DE 2001, Mediante la cual se fomenta el uso racional y eficiente de la energía, se promueve la utilización de energías alternativas y se dictan otras disposiciones.” Congreso de la República, Bogotá, D.C., Diario Oficial No. 44.573, de 05 de octubre de 2001.spa
dc.relation.references“LEY_0788_2002, Por la cual se expiden nor- mas en materia tributaria y penal del orden nacional y territorial; y se dictan otras disposiciones.” Congreso de la República, Bogotá, D.C., Diario Oficial No. 45.046 de 27 de diciembre de 2002.spa
dc.relation.references“LEY 1665 DE 2013, por medio de la cual se aprueba el “Estatuto de la Agencia Internacional de Energías Renovables (Irena )”, hecho en Bonn , Alema- nia, el 26 de enero de 2009.” Congreso de la República, Bogotá D.C., Diario Oficial 48.853, julio 16 de 2013.spa
dc.relation.references“LEY 1715 DE 2014. Por medio de la cual se re- gula la integración de las energías renovables no con- vencionales al Sistema Energético Nacional” Congre- so de la República, Bogotá, D.C., Diario Oficial 49.150, mayo 13 de 2014.spa
dc.relation.referencesBP, “Statistical Review of World Energy 2018,” pp. 1–53, 2018.spa
dc.relation.referencesRFA, “Industry Statistics,” 2017. [Online]. Availa- ble: https://ethanolrfa.org/resources/industry/statis- tics/. [Accessed: 16-Sep-2018].spa
dc.relation.referencesS. Fernando, S. Adhikari, C. Chandrapal, and N. Murali, “Biorefineries: Current status, challenges, and future direction,” Energy and Fuels, vol. 20, no. 4, pp. 1727–1737, 2006.spa
dc.relation.referencesM. G. Papatheofanous, D. P. Koullas, E. G. Koukios, H. Fuglsang, J. R. Schade, and B. Löfqvist, “Biorefining of agricultural crops and residues: Effect of pilot-plant fractionation on properties of fibrous fractions,” Bio- mass and Bioenergy, vol. 8, no. 6, pp. 419–426, 1995.spa
dc.relation.referencesM. O’Hare, A. E. Farrell, R. J. Plevin, and B. T. Tur- ner, “Creating markets for green biofuels: Measuring and improving environmental performance.,” UC Berkeley: Transportation Sustainability Research Center, Berkeley, California, 2007.spa
dc.relation.referencesF. Serna, L. Barrera, and H. Montiel, “Impacto So- cial y Económico en el Uso de Biocombustibles,” J. Te- chnol. Manag. Innov., vol. 6, no. 1, pp. 100–114, 2011.spa
dc.relation.referencesL. N. Manrique-Ramírez et al., “Floricultura co- lombiana en contexto: experiencias y oportunidades en Asia pacífico,” Online J. Mundo Asia Pacifico, vol. 3, no. 5, pp. 52–79, 2014.spa
dc.relation.referencesB. Quevedo-Hidalgo, P. C. Narvaéz-Rincón, A. M. Pedroza-Rodríguez, and M. E. Velásquez-Lozano, “De- gradation of chrysanthemum (dendranthema grandi- flora) wastes by pleurotus ostreatus for the production of reducing sugars,” Biotechnol. Bioprocess Eng., 2012.spa
dc.relation.referencesS. Larsson et al., “The generation of fermentation inhibitors during dilute acid hydrolysis of softwood,” En- zyme Microb. Technol., vol. 24, no. (3-4), pp. 151–159, 1999.spa
dc.relation.referencesK.Reczey, Zs.Szengyel, R.Eklund, and G.Zacchi, “Cellulase production by T.reesei,” Bioresour. Technol., vol. 57, pp. 25–30, 1996.spa
dc.relation.referencesT. Juhász, Z. Szengyel, K. Réczey, M. Siika-Aho, and L. Viikari, “Characterization of cellulases and hemi- cellulases produced by Trichoderma reesei on various carbon sources,” Process Biochem., vol. 40, no. 11, pp. 3519–3525, 2005.spa
dc.relation.referencesA. Ahamed and P. Vermette, “Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions,” Biochem. Eng. J., vol. 40, no. 3, pp. 399– 407, 2008.spa
dc.relation.referencesA. Ahamed and P. Vermette, “Effect of culture medium composition on Trichoderma reesei’s mor- phology and cellulase production,” Bioresour. Technol., vol. 100, no. 23, pp. 5979–5987, 2009.spa
dc.relation.referencesR. K. Sukumaran, R. R. Singhania, G. M. Mathew, and A. Pandey, “Cellulase production using biomass feed stock and its application in lignocellulose saccha- rification for bio-ethanol production,” Renew. Energy, vol. 34, no. 2, pp. 421–424, 2009.spa
dc.relation.referencesL. Olsson, T. M. I. E. Christensen, K. P. Hansen, and E. A. Palmqvist, “Influence of the carbon source on production of cellulases, hemicellulases and pectina- ses by Trichoderma reesei Rut C-30,” Enzyme Microb. Technol., vol. 33, no. 5, pp. 612–679, 2003.spa
dc.relation.referencesJ. Liu, X. Yuan, G. Zeng, J. Shi, and S. Chen, “Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation,” Process Biochem., vol. 41, no. 11, pp. 2347–2351, 2006.spa
dc.relation.referencesF. C. Domnigues, J. a. Queiroz, J. M. S. Cabral, and L. P. Fonseca, “The influence of culture conditions on mycelial structure and cellulose production by Tri- choderma reeseiRut C-30,” Enzym. Microb. Technol, vol. 26, pp. 394–401, 2000.spa
dc.relation.referencesZ. Wen, W. Liao, and S. Chen, “Production of ce- llulase by Trichoderma reesei from dairy manure,” Bio- resour. Technol., vol. 96, no. 4, pp. 491–499, 2005.spa
dc.relation.referencesM. Chandra, A. Kalra, P. K. Sharma, H. Kumar, and R. S. Sangwan, “Optimization of cellulases produc- tion by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process,” Biomass and Bioenergy, vol. 34, no. 5, pp. 805–811, 2010.spa
dc.relation.referencesL. Hoyos-Carvajal, S. Orduz, and J. Bissett, “Ge- netic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions,” Fungal Ge- net. Biol., vol. 46, no. 9, pp. 615–631, 2009.spa
dc.relation.referencesC. M. Marcello, A. S. Steindorff, S. P. da Silva, R. do N. Silva, L. A. Mendes Bataus, and C. J. Ulhoa, “Ex- pression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum,” Micro- biol. Res., vol. 165, no. 1, pp. 75–81, 2010.spa
dc.relation.referencesM. F. Ibrahim, M. N. A. Razak, L. Y. Phang, M. A. Hassan, and S. Abd-Aziz, “Crude cellulase from oil palm empty fruit bunch by trichoderma asperellum UPM1 and aspergillus fumigatus UPM2 for fermenta- ble sugars production,” Appl. Biochem. Biotechnol., vol. 170, no. 6, pp. 1320–1335, 2013.spa
dc.relation.referencesC. Aiello, A. Ferrer, and A. Ledesma, “Effect of alkaline treatments at various temperatures on cellu- lase and biomass production using submerged sugar- cane bagasse fermentation with Trichoderma reesei QM 9414,” Bioresour. Technol., vol. 57, no. 1, pp. 13–18, 1996.spa
dc.relation.referencesL. Xia and P. Cen, “Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry,” Process Biochem., vol. 34, no. 9, pp. 909–912, 1999.spa
dc.relation.referencesI. Rodríguez and Y. Piñeros, “Producción de complejos enzimáticos celulolíticos mediante el culti- vo de fase sólida de Trichoderma sp. sobre los racimos vacíos de palma de aceite como sustrato,” Rev. la Fac. Química Farm., no. 22, pp. 35–42, 2007.spa
dc.relation.referencesQ. Zhang, C. M. Lo, and L. K. Ju, “Factors affec- ting foaming behavior in cellulase fermentation by Tri- choderma reesei Rut C-30,” Bioresour. Technol., vol. 98, no. 4, pp. 753–760, 2007.spa
dc.relation.referencesC. M. Lo, Q. Zhang, N. V. Callow, and L. K. Ju, “Cellulase production by continuous culture of Tricho- derma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction,” Biore- sour. Technol., vol. 101, no. 2, pp. 717–723, 2010.spa
dc.relation.referencesK. Rocky-Salimi and Z. Hamidi-Esfahani, “Eva- luation of the effect of particle size, aeration rate and harvest time on the production of cellulase by Tricho- derma reesei QM9414 using response surface me- thodology,” Food Bioprod. Process., vol. 88, no. 1, pp. 61–66, 2010.spa
dc.relation.referencesF. G. de Siqueira et al., “The potential of agro-in- dustrial residues for production of holocellulase from filamentous fungi,” Int. Biodeterior. Biodegrad., vol. 64, no. 1, pp. 20–26, 2010.spa
dc.relation.referencesG. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Anal. Chem., vol. 31, no. 3, pp. 426–428, 1959spa
dc.relation.referencesEIA, “International Energy Outlook 2017 Over- view,” U.S. Energy Inf. Adm., vol. IEO2017, no. 2017, p. 143, 2017.spa
dc.relation.referencesU. S. E. I. Administration, “Annual Energy Outlook 2018 with projections to 2050,” J. Phys. A Math. Theor., vol. 44, no. 8, pp. 1–64, 2018.spa
dc.relation.referencesEIA, “Short-Term Energy Outlook ( STEO ) Fore- cast highlights,” US EIA - Short-Term Energy Outlook, no. April 2017, pp. 1–48, 2018.spa
dc.relation.referencesM. Guo, W. Song, and J. Buhain, “Bioenergy and biofuels: History, status, and perspective,” Renewable and Sustainable Energy Reviews. 2015.spa
dc.relation.referencesA. Molino, S. Chianese, and D. Musmarra, “Bio- mass gasification technology: The state of the art over- view,” J. Energy Chem., vol. 25, no. 1, pp. 10–25, 2016.spa
dc.relation.referencesM. J. C. van der Stelt, H. Gerhauser, J. H. A. Kiel, and K. J. Ptasinski, “Biomass upgrading by torrefaction for the production of biofuels: A review,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3748–3762, 2011.spa
dc.relation.referencesB. Acharya, A. Dutta, and J. Minaret, “Review on comparative study of dry and wet torrefaction,” Sus- tain. Energy Technol. Assessments, vol. 12, pp. 26–37, 2015.spa
dc.relation.referencesD. Nhuchhen, P. Basu, and B. Acharya, “A Com- prehensive Review on Biomass Torrefaction,” Int. J. Re- new. Energy Biofuels, vol. 2014, pp. 1–56, 2014.spa
dc.relation.referencesM. J. Prins, K. J. Ptasinski, and F. J. J. G. Jans- sen, “More efficient biomass gasification via torrefac- tion,” Energy, vol. 31, no. 15, pp. 3458–3470, 2006.spa
dc.relation.referencesG. Gordillo and K. Annamalai, “Adiabatic fixed bed gasification of dairy biomass with air and steam,” Fuel, vol. 89, no. 2, pp. 384–391, 2010.spa
dc.relation.referencesM. A. Nagao and H. H. Hirae, “Macadamia: Cul- tivation and physiology,” CRC. Crit. Rev. Plant Sci., vol. 10, no. 5, pp. 441–470, 1992.spa
dc.relation.referencesT. P. Xavier, T. S. Lira, M. A. Schettino, and M. A. S. Barrozo, “A study of pyrolysis of Macadamia Nut Shell: Parametric sensitivity analysis of the IPR model,” Brazilian J. Chem. Eng., vol. 33, no. 1, pp. 115–122, 2016.spa
dc.relation.referencesM. Venkatachalan and S. K. Sathe, “Chemical composition of selected edible nut seeds,” J. Agric. Food Chem., vol. 54, no. 13, pp. 4705–4714, 2006.spa
dc.relation.referencesA. J. Moreno-Pérez, A. Sánchez-García, J. J. Salas, R. Garcés, and E. Martínez-Force, “Acyl-ACP thioesterases from macadamia (Macadamia tetraphy- lla) nuts: Cloning, characterization and their impact on oil composition,” Plant Physiol. Biochem., vol. 49, no. 1, pp. 82–87, 2011.spa
dc.relation.referencesS. L. B. Navarro and C. E. C. Rodrigues, “Maca- damia oil extraction methods and uses for the defatted meal byproduct,” Trends Food Sci. Technol., vol. 54, pp. 148–154, 2016.spa
dc.relation.referencesG. E. J. Poinern, G. Senanayake, N. Shah, X. N. Thi-Le, G. M. Parkinson, and D. Fawcett, “Adsorption of the aurocyanide, Au (CN)2- complex on granular ac- tivated carbons derived from macadamia nut shells - A preliminary study,” Miner. Eng., vol. 24, no. 15, pp. 1694–1702, 2011.spa
dc.relation.referencesD. b. martinez, “Impacto del pre-tratamiento de la biomasa,” 2013.spa
dc.relation.referencesD. Mohan, C. U. Pittman, and P. H. Steele, “Pyroly- sis of wood/biomass for bio-oil: A critical review,” Ener- gy and Fuels, vol. 20, no. 3, pp. 848–889, 2006.spa
dc.relation.referencesG. Lv, S. Wu, and R. Lou, “Kinetic Study of the Thermal Decomposition of Hemicellulose Isolated From Corn Stalk,” BioResources, vol. 5, no. 2, pp. 1281– 1291, 2010.spa
dc.relation.referencesL. He, J. Yang, and D. Chen, “Hydrogen from Bio- mass: Advances in Thermochemical Processes,” Re- new. Hydrog. Technol. Prod. Purification, Storage, Appl. Saf., pp. 111–133, 2013.spa
dc.relation.referencesC. Y. Li, J. Y. Wu, C. Chavasint, S. Sampattagul, T. Kiatsiriroat, and R. Z. Wang, “Multi-criteria optimiza- tion for a biomass gasification-integrated combined cooling, heating, and power system based on life-cycle assessment.”spa
dc.relation.referencesM. M. Ramirez-Corredores, “Pathways and Me- chanisms of Fast Pyrolysis: Impact on Catalyst Re- search,” Role Catal. Sustain. Prod. Bio-Fuels Bio-Che- micals, pp. 161–216, 2013.spa
dc.relation.referencesS. Zhang, Y. Yan, T. Li, and Z. Ren, “Upgrading of liquid fuel from the pyrolysis of biomass,” Bioresour. Technol., vol. 96, no. 5, pp. 545–550, 2005.spa
dc.relation.referencesJ. Bonilla, “ADIABATIC FIXED-BED GASIFICA- TION OF COLOMBIAN COFFEE HUSK USING AIR- STEAM BLENDS FOR PARTIAL OXIDATION .,” pp. 1–26.spa
dc.relation.referencesK. Sandeep and S. Dasappa, “First and second law thermodynamic analysis of air and oxy-steam bio- mass gasification,” Int. J. Hydrogen Energy, vol. 39, no. 34, pp. 19474–19484, 2014.spa
dc.relation.referencesH. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, 2007.spa
dc.relation.referencesS. Vyazovkin, Isoconversional Kinetics of Ther- mally Stimulated Processes. 2015.spa
dc.relation.referencesT. Ozawa, “A New Method of Analyzing Thermo- gravimetric Data,” Bull. Chem. Soc. Jpn., vol. 38, no. 11, pp. 1881–1886, 1965.spa
dc.relation.referencesC. D. Doyle, “Estimating isothermal life from thermogravimetric data,” J. Appl. Polym. Sci., vol. 6, no. 24, pp. 639–642, 1962.spa
dc.relation.referencesJ. Flynn and L. A. Wall, “A quick, Direct Method for the Determination of Activation Energy from Ther- mogravimetric Data,” J. Polym. Sci. Part C Polym. Lett., vol. 4, no. 5, pp. 323–328, 1966.spa
dc.relation.referencesV. Mamleev, S. Bourbigot, M. Le Bras, and J. Le- febvre, “Three Model-Free Methods for Calculating of Activation Energy in TG,” J. Therm. Anal. Calorim., vol. 78, pp. 1009–1027, 2004.spa
dc.relation.referencesH. E. Kissinger, “Reaction Kinetics in Differen- tial Thermal Analysis,” Anal. Chem., vol. 29, no. 11, pp. 1702–1706, 1957.spa
dc.relation.referencesM. J. Starink, “A new method for the derivation of activation energies from experiments performed at constant heating rate,” Thermochim. Acta, vol. 288, no. 1–2, pp. 97–104, 1996.spa
dc.relation.referencesM. J. Starink, “Activation energy determination for linear heating experiments: Deviations due to ne- glecting the low temperature end of the temperature integral,” J. Mater. Sci., vol. 42, no. 2, pp. 483–489, 2007.spa
dc.relation.referencesASTM, “ASTM E1757 - 01 Standard Practice for Preparation of Biomass for Compositional Analysis,” vol. 01, no. Reapproved 2015, pp. 18–21, 2015.spa
dc.relation.referencesK. Raveendran, A. Ganesh, and K. C. Khilar, “Pyrolysis characteristics of biomass and biomass components,” Fuel, vol. 75, no. 8, pp. 987–998, 1996.spa
dc.relation.referencesH. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, 2007.spa
dc.relation.referencesS. Vyazovkin, K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Suñol, “ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations,” Thermochim. Acta, vol. 590, pp. 1–23, 2014.spa
dc.relation.referencesS. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “IC- TAC Kinetics Committee recommendations for perfor- ming kinetic computations on thermal analysis data,” Thermochim. Acta, vol. 520, no. 1–2, pp. 1–19, 2011.spa
dc.relation.referencesX. Yuan, T. He, H. Cao, and Q. Yuan, “Cattle ma- nure pyrolysis: kinetic and thermodynamic analysis with isoconversional methods,” Renew. Energy, vol. 107, pp. 489–496, 2017.spa
dc.relation.referencesS. D. Stefanidis, K. G. Kalogiannis, E. F. Iliopou- lou, C. M. Michailof, P. A. Pilavachi, and A. A. Lappas, “A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin,” J. Anal. Appl. Pyrolysis, vol. 105, pp. 143–150, 2014.spa
dc.relation.referencesA. V. Bridgwater, “Review of fast pyrolysis of bio- mass and product upgrading,” Biomass and Bioenergy, vol. 38, pp. 68–94, 2012.spa
dc.relation.referencesM. Balat, “Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis,” Energy Sources, Part A Recover. Util. Envi- ron. Eff., vol. 30, no. 7, pp. 620–635, 2008.spa
dc.relation.referencesA. Toledano, L. Serrano, J. Labidi, A. Pineda, A. M. Balu, and R. Luque, “Heterogeneously Catalysed Mild Hydrogenolytic Depolymerisation of Lignin Under Mi- crowave Irradiation with Hydrogen-Donating Solvents,” ChemCatChem, vol. 5, no. 4, pp. 977–985, 2013.spa
dc.relation.referencesG. T. Austin, Manual de Procesos Químicos en la Industria, 1a (En Esp. México, 1988.spa
dc.relation.referencesV. Martínez-Merino, M. J. Gil, and A. Cornejo, “Bio- mass Sources for Hydrogen Production,” in Renewable Hydrogen Technologies, Elsevier, 2013, pp. 87–110.spa
dc.relation.referencesL. M. Gandía, G. Arzamendi, and P. M. Diéguez, “Renewable Hydrogen Energy,” in Renewable Hydrogen Technologies, Elsevier, 2013, pp. 1–17.spa
dc.relation.referencesI. Gandarias, S. G. Fernández, M. El Doukkali, J. Requies, and P. L. Arias, “Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source,” Top. Ca- tal., vol. 56, no. 11, pp. 995–1007, 2013.spa
dc.relation.referencesM. J. Gilkey and B. Xu, “Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Bio- mass Upgrading,” ACS Catal., vol. 6, no. 3, pp. 1420– 1436, 2016.spa
dc.relation.referencesI. Gandarias, P. L. Arias, J. Requies, M. El Doukkali, and M. B. Güemez, “Liquid-phase glycerol hydrogenoly- sis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source,” J. Catal., vol. 282, no. 1, pp. 237–247, 2011.spa
dc.relation.referencesE. Furimsky, “Hydroprocessing challenges in biofuels production,” Catal. Today, vol. 217, pp. 13–56, 2013.spa
dc.relation.referencesX. Jin, “Catalytic Conversion of Biomass-Derived Polyols to Value-Added Chemicals : Catalysis and Ki- netics Xin Jin Catalytic Conversion of Biomass-Derived Polyols to Value-Added Chemicals : Catalysis and Ki- netics,” 2014.spa
dc.relation.referencesK. Hwang, I. Choi, H. Choi, J. Han, K. Lee, and J. Lee, “Bio fuel production from crude Jatropha oil; addi- tion effect of formic acid as an in-situ hydrogen sour- ce,” FUEL, vol. 174, pp. 107–113, 2016.spa
dc.relation.referencesY. Yang, Q. Wang, H. Chen, and X. Zhang, “En- hancing selective hydroconversion of C 18 fatty acids into hydrocarbons by hydrogen-donors,” FUEL, vol. 133, pp. 241–244, 2014.spa
dc.relation.referencesM. M. Ramirez-Corredores, “Pathways and Me- chanisms of Fast Pyrolysis: Impact on Catalyst Re- search,” Role Catal. Sustain. Prod. Bio-Fuels Bio-Che- micals, pp. 161–216, 2013.spa
dc.relation.referencesM. Kleinert, J. R. Gasson, and T. Barth, “Optimi- zing solvolysis conditions for integrated depolymerisa- tion and hydrodeoxygenation of lignin to produce liquid biofuel,” J. Anal. Appl. Pyrolysis, vol. 85, no. 1–2, pp. 108–117, 2009.spa
dc.relation.referencesK. Jacobson, K. C. Maheria, and A. Kumar Dalai, “Bio-oil valorization: A review,” Renew. Sustain. Energy Rev., vol. 23, pp. 91–106, 2013.spa
dc.relation.referencesO. Y. Suárez Palacios, “Producción y Mode- lamiento de Gliceril-esteres como plastificantes del PVC,” 2011.spa
dc.relation.referencesX. Liu, S. Li, Y. Liu, and Y. Cao, “Formic acid : A versatile renewable reagent for green and sustainable chemical synthesis,” Chinese J. Catal., vol. 36, no. 9, pp. 1461–1475, 2015.spa
dc.relation.referencesF. Jin, J. Yun, G. Li, A. Kishita, K. Tohji, and H. Enomoto, “Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures,” Green Chem., vol. 10, no. 6, pp. 612–615, 2008.spa
dc.relation.referencesR. Arslan and Y. Ulusoy, “Utilization of waste coo- king oil as an alternatuve fuel for Turkey,” in 5th Interna- tional Conference on Renewable Energy Research and Applications, ICRERA 2016, 2016, vol. 5, pp. 149–152.spa
dc.relation.referencesS. Dewang, Suriani, S. Hadriani, E. S. Lestari, Banu, and Diana, “Production from Callophyllum Inophyllum L using Catalyst and Time Variations for Stirring in,” in 6th International Conference on Renewable Energy Re- search and Applications, ICRERA 2017, 2017, vol. 5, pp. 734–738.spa
dc.relation.referencesA. Hidayat and M. A. Adnan, “Free Fatty Acid Re- moval on Sludge of Palm Oil using Heterogeneous So- lid Catalyst Derived from Palm Empty Fruit Bunch,” Int. J. Renew. Energy Res., vol. 8, no. 2, pp. 986–993, 2018.spa
dc.relation.referencesE. Bernard, “Biodiesel : Los aspectos mecánicos en los vehículos,” 2014.spa
dc.relation.referencesX. Wang, Y. Ge, L. Yu, and X. Feng, “Comparison of combustion characteristics and brake thermal effi- ciency of a heavy-duty diesel engine fueled with diesel and biodiesel at high altitude,” Fuel, vol. 107, pp. 852– 858, 2013.spa
dc.relation.referencesL. P. Lindfors, “High Quality Transportation Fuels From Renewable Feedstock,” in XXIst World Energy Congress Montreal, 2010, pp. 1–12.spa
dc.relation.referencesH. Aatola, M. Larmi, T. Sarjovaara, and S. Mikko- nen, “Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emis- sion, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500,” SAE Tech. Pap., no. 724, p. 12, 2008.spa
dc.relation.referencesR. Sotelo-boyás, F. Trejo-zárraga, and F. D. J. Her- nández-loyo, “Hydroconversion of Triglycerides into Green Liquid Fuels,” in Hydrogenation, InTech, Ed. 2012, pp. 187–216.spa
dc.relation.referencesT. Khammasan and N. Tippayawong, “Light Li- quid Fuel from Catalytic Cracking of Beef Tallow with ZSM-5,” Int. J. Renew. Energy Res., vol. 8, no. 1, pp. 407–413, 2018.spa
dc.relation.referencesS. Jamilatun and A. Budiman, “Non-Catalytic Slow Pyrolysis of Spirulina Platensis Residue for Pro- duction of Liquid Biofuel,” Int. J. Renew. Energy Res., vol. 7, no. 4, pp. 1901–1908, 2017.spa
dc.relation.referencesA. Budiman and P. Mulyono, “Silica-Alumina Ba- sed Catalytic Cracking of Bio-Oil Using Double Series Reactor,” Int. J. Energy Res., vol. 8, no. 1, pp. 414–420, 2018.spa
dc.relation.referencesV. Martínez-Merino, M. J. Gil, and A. Cornejo, “Biomass Sources for Hydrogen Production,” in Re- newable Hydrogen Technologies, Elsevier, 2013, pp. 87–110.spa
dc.relation.referencesO. Bilgin, “Evaluation of hydrogen energy pro- duction of mining waste waters and pools,” in 4th Inter- national Conference on Renewable Energy Research and Applications, ICRERA 2015, 2015, vol. 4, pp. 557– 561.spa
dc.relation.referencesS. Mohapatra, “Hydrogen Production Technolo- gies with Specific Reference to Biomass,” Int. J. Renew. Energy Res., vol. 2, no. 3, pp. 416–420, 2012.spa
dc.relation.referencesL. Ce, O. Ni, and C. Lee, “Hydrogen production from oxidative steam reforming of ethanol on pyro- chlore-type metal oxide ,” in 1th International Conferen- ce on Renewable Energy Research and Applications, ICRERA 2012, 2012, pp. 9–11.spa
dc.relation.referencesO. Nakagoe, Y. Furukawa, and S. Tanabe, “Hy- drogen production from steam reforming of woody biomass with cobalt catalyst,” in 1th International Con- ference on Renewable Energy Research and Applica- tions, ICRERA 2012, 2012, pp. 2–5.spa
dc.relation.referencesI. Gandarias, P. L. Arias, J. Requies, M. El Doukkali, and M. B. Güemez, “Liquid-phase glycerol hy- drogenolysis to 1,2-propanediol under nitrogen pressu- re using 2-propanol as hydrogen source,” J. Catal., vol. 282, no. 1, pp. 237–247, 2011.spa
dc.relation.referencesM. M. Ramirez-Corredores, “Pathways and Me- chanisms of Fast Pyrolysis: Impact on Catalyst Re- search,” Role Catal. Sustain. Prod. Bio-Fuels Bio-Che- micals, pp. 161–216, 2013.spa
dc.relation.referencesX. Jin, “Catalytic Conversion of Biomass-Deri- ved Polyols to Value-Added Chemicals : Catalysis and Kinetics Xin Jin Catalytic Conversion of Biomass-Deri- ved Polyols to Value-Added Chemicals : Catalysis and Kinetics,” 2014.spa
dc.relation.referencesK. Hwang, I. Choi, H. Choi, J. Han, K. Lee, and J. Lee, “Bio fuel production from crude Jatropha oil; addi- tion effect of formic acid as an in-situ hydrogen sour- ce,” FUEL, vol. 174, pp. 107–113, 2016.spa
dc.relation.referencesE. Santillan-jimenez and M. Crocker, “Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonyla- tion,” J. Chem. Technol. Biotechnol., no. February, pp. 1–10, 2012.spa
dc.relation.referencesY. Yang, Q. Wang, H. Chen, and X. Zhang, “En- hancing selective hydroconversion of C 18 fatty acids into hydrocarbons by hydrogen-donors,” FUEL, vol. 133, pp. 241–244, 2014.spa
dc.relation.referencesM. J. Gilkey and B. Xu, “Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Bio- mass Upgrading,” ACS Catal., vol. 6, no. 3, pp. 1420– 1436, 2016.spa
dc.relation.referencesA. Srifa, K. Faungnawakij, V. Itthibenchapong, and N. Viriya-empikul, “Production of bio-hydrogena- ted diesel by catalytic hydrotreating of palm oil over NiMoS2/c-Al2O3 catalys,” Bioresour. Technol., vol. 158, pp. 81–90, 2014.spa
dc.relation.referencesL. P. Lindfors, “High Quality Transportation Fuels From Renewable Feedstock,” in XXIst World Energy Congress Montreal, 2010, pp. 1–12.spa
dc.relation.referencesG. Knothe, “Biodiesel and renewable diesel: A comparison,” Prog. Energy Combust. Sci., vol. 36, no. 3, pp. 364–373, 2010.spa
dc.relation.referencesH. Aatola, M. Larmi, T. Sarjovaara, and S. Mikko- nen, “Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emis- sion, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500,” SAE Tech. Pap., no. 724, p. 12, 2008.spa
dc.relation.referencesS. Brillouet, E. Baltag, S. Brunet, and F. Richard, “Applied Catalysis B : Environmental Deoxygenation of decanoic acid and its main intermediates over unpro- moted and promoted sulfided catalysts,” "Applied Ca- tal. B, Environ., vol. 148–149, pp. 201–211, 2014.spa
dc.relation.referencesM. Toba, Y. Abe, H. Kuramochi, M. Osako, T. Mo- chizuki, and Y. Yoshimura, “Hydrodeoxygenation of waste vegetable oil over sulfide catalysts,” Catal. To- day, vol. 164, no. 1, pp. 533–537, 2011.spa
dc.relation.referencesA. Srifa, K. Faungnawakij, V. Itthibenchapong, and N. Viriya-empikul, “Production of bio-hydrogena- ted diesel by catalytic hydrotreating of palm oil over NiMoS2/c-Al2O3 catalys,” Bioresour. Technol., vol. 158, pp. 81–90, 2014.spa
dc.relation.referencesA. Srifa, K. Faungnawakij, V. Itthibenchapong, and S. Assabumrungrat, “Roles of monometallic ca- talysts in hydrodeoxygenation of palm oil to green die- sel,” Chem. Eng. J., vol. 278, pp. 249–258, 2015.spa
dc.relation.referencesLinseis, “Simultaneous Thermal Analysis - STA (TGA/DSC),” 2018. [Online]. Available: http://www.lin- seis.com/en/our-products/simultaneous-thermogra- vimetry/.spa
dc.relation.referencesM. K. Oudenhuijzen, P. J. Kooyman, B. Tappel, J. A. Van Bokhoven, and D. C. Koningsberger, “Understan- ding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2impregnated with [Pt2+(NH3)4](NO3−)2: A combi- nation of HRTEM, mass spectrometry, and quick EXA- FS,” J. Catal., vol. 205, no. 1, pp. 135–146, 2002.spa
dc.relation.referencesWorld Energy Conusil, “World Energy Re- sources,” World Energy Counsil, 2016. [Onli- ne]. Available: http://www.springerlink.com/in- dex/10.1007/978-3-642-56342-3.spa
dc.relation.referencesG. Joshi, J. K. Pandey, S. Rana, and D. S. Rawat, “Challenges and opportunities for the application of biofuel,” Renew. Sustain. Energy Rev., vol. 79, no. March, pp. 850–866, 2017.spa
dc.relation.referencesA. K. Panda, “Studies on process optimization for production of liquid fuels from waste plastics,” no. July 2011, 2011.spa
dc.relation.referencesInternational Energy Agency, “WORLD ENERGY BALANCES: AN OVERVIEW Global trends,” p. 21, 2017.spa
dc.relation.referencesWorl Energy Council, “World Energy Resources Oil | 2016,” p. 91, 2016.spa
dc.relation.referencesSecretaria Disrital De Ambiente, “Porcentaje de generación de residuos aprovechables por tipo de ma- terial en el sector público Distrital.,” 2016.spa
dc.relation.referencesA. K. Panda, “Studies on process optimization for production of liquid fuels from waste plastics,” 2011.spa
dc.relation.referencesS. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Convers. Manag., vol. 115, pp. 308– 326, 2016.spa
dc.relation.referencesD. A, B. M.A y K. M, «Diesel Fuel From Waste Lu- bricating Oil by Pyrolitic Distillation,» Petroleum Scien- ce and Technology , vol. 33, no 2, pp. 129-138, 2015.spa
dc.relation.referencesMINISTERIO DE AMBIENTE, VIVIENDA Y DESA- RROLLO TERRITORIAL, «Manual Técnico para el Mane- jo,» Bogota, 2005.spa
dc.relation.referencesH. G. Anza Cruz, P. D. Orantes Calleja, R. Gon- zález Herrera y A. Ruíz Marín, «BIORREMEDIACIÓN DE SUELOS CONTAMINADOS CON ACEITE AUTOMOTRIZ USADOS MEDIANTE SISTEMA DE BIOPILAS,» ESPA- CIO I+D, vol. 5, no 12, p. 2, 2016.spa
dc.relation.referencesM. A. Al-Ghouti y L. Al-Atoum, «Virgin and recy- cled engine oil differentiation: A spectroscopic study,» Journal of Environmental Management, vol. 90, no 1, pp. 187-195, 2009.spa
dc.relation.referencesV. Kanokkantapong, W. Kiatkittipong, Panyapin- yop, P. Wongsuchoto y P. Pavasant, «Used lubricating oil management options based on life cycle thinking,» Resources, conservation and recycling, vol. V, no 53, pp. 294-299, 2009.spa
dc.relation.referencesE. Delgado, J. Parra, L. Aguilar y D. Guevara, «COMBUSTIBLES ALTERNATIVOS A PARTIR DE ACEI- TES,» Avances en investigación e ingenieria , no 6, pp. 110-115, 2007.spa
dc.relation.referencesT. D.F., T. P.G y M. M.Hattingh, «Enumeration, iso- lation and identification of sulphate-reducing bacteria of anaerobic digestion,» Water Research, vol. II, no 7, pp. 505-513, 1968.spa
dc.relation.referencesC. Stan, C. Andreescu y M. Toma, «Some aspects of the regeneration of used motor oil,» Procedia Ma- nunfacturing, no 22, pp. 709-713, 2018.spa
dc.relation.referencesInternational Organization for Standardization, Water quality -- Sampling -- Part 3: Preservation and handling of water samples, 5, 2018.spa
dc.relation.referencesA.-G. Mohammad y A. LinaAl, «Virgin and recy- cled engine oil differentiation: A spectroscopic study,» Journal of Environmental Management, vol. 90, no 1, pp. 187-195, 2009.spa
dc.relation.referencesO. Arpa, R. Yumrutas y Z. Argunhan, «Experi- mental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission,» Fuel Processing Tech- nology, vol. 91, no 10, pp. 1241-1249, 2010.spa
dc.relation.referencesAsociación Colombiana del petroleo, Panora- ma general del aceite lubricante usado, Bogota, 2016.spa
dc.relation.referencesE. Muñoz, D. Montoya y A. Muñoz, «PLANTEA- MIENTO Y SOLUCIÓN DE LA PROBLEMATICA DE LOS USADOS EN COLOMBIA,» Medellin, 2017.spa
dc.relation.referencesK. Hakuta, H. Masaki, M. Nagura, N. Umeya- ma, and K. Nagai, “Evaluation of Various Photovoltaic Power Generation Systems,” Inst. Electr. Electron. Eng. IEEEXplore, no. 2015 IEEE International Telecommuni- cations Energy Conference (INTELEC), pp. 1–4, 2015.spa
dc.relation.referencesO. I. Adekol, A. M. Almaktoof, and A. K. Raji, “De- sign of a Smart Inverter System for Photovoltaic Sys- tems Application,” IEEEXplore, no. 2016 International Conference on the Industrial and Commercial Use of Energy (ICUE), pp. 310–217, 2015.spa
dc.relation.referencesA. Alcaldia de monteria, “Primer colegio con ener- gía solar en el país,” 2017.spa
dc.relation.referencesE. Celsia Solar grupo Argos, “Empezó a generar energía Celsia Solar Yumbo, primera granja fotovoltai- ca de Colombia,” 1, 2017.spa
dc.relation.referencesI. Instituto Colombiano de Normas Técnicas and I. Instituto de Ciencias Nucleares y Energías Alternati- vas, “Evaluación de la eficiencia de los sistemas sola- res fotovoltaicos y sus componentes. NTC 4405,” Icon- tec Internacional. p. 7, 1998.spa
dc.relation.referencesI. IEEE Power Engineering society, “IEEE Recom- mended Practices and Requirement for Harmonic Con- trol in Electrical Power Systems STD IEEE-519-1992.” p. 101, 1992.spa
dc.relation.referencesM. Barajas and B. Sánchez, “Contaminación ar- mónica producida por cargas no lineales de baja po- tencia: modelo matemático y casos prácticos,” Scielo, pp. 189–198, 2010.spa
dc.relation.referencesV. R. Franca, M. A. Filho, and K. Carneiro De Oli- veira, “Analysis of Power Quality for Photovoltaic Sys- tems Connected to the Grid,” IEEEXplore, p. 5, 2016.spa
dc.relation.referencesM. Kubat, “Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7.,” The Knowledge Engineering Review, vol. 13, no. 4. p. S0269888998214044, 1999spa
dc.relation.referencesC. Razo, A. Astete-Miller, A. Saucedo, and C. Lu- deña, “Biocombustibles y su impacto potencial en la estructura agraria, precios y empleo en América Lati- na,” Santiago de Chile, 2007.spa
dc.relation.referencesA. Ladino and H. B. Jason, “Diseño de Reactor por Cavitación Hidrodinámica Mediante CFD para Apli- caciones de Producción de Biodiesel,” Universidad de Cali, 2014.spa
dc.relation.referencesL. López, J. Bocanegra, and D. Malagón-rome- ro, “Obtención de biodiesel por transesterificación de aceite,” Ing. y Univ., vol. 19, no. 1, pp. 155–172, 2015.spa
dc.relation.referencesR. Alarcón, D. Malagón-Romero, and A. Ladino, “Biodiesel production from waste frying oil and palm oil mixtures,” Chem. Eng. Trans., vol. 57, pp. 571–576, 2017.spa
dc.relation.referencesD. Rodríguez, J. Riesco, and D. Malagon-Romero, “Production of Biodiesel from Waste Cooking Oil and Castor Oil Blends,” Chem. Eng. Trans., vol. 57, pp. 679– 684, 2017.spa
dc.relation.referencesH. G. Romero, “Evaluación de la política de Bio- combustibles en Colombia,” 2012.spa
dc.relation.referencesP. R. Gogate, “Cavitational reactors for process intensification of chemical processing applications: A critical review,” Chem. Eng. Process., vol. 47, pp. 515– 527, 2008.spa
dc.relation.referencesP. R. Gogate, R. Tayal, and A. Pandit, “Cavitation: A technology on the horizon,” Curr. Sci., pp. 35–46, 2006.spa
dc.relation.referencesA. Pandit and P. R. Gogate, “A review and assess- ment of hydrodynamic cavitation as a technology for the future,” Ultrason. Sonochemistry, vol. 12, pp. 21– 27, 2005.spa
dc.relation.referencesH. D. Inc., “Hydro Dynamics Inc.,” Hydro Dyna- mics Inc., 2014.spa
dc.relation.referencesC. T. Inc., “Cavitation Technologies Inc.,” Cavita- tion Technol. Inc., 2014.spa
dc.relation.referencesPiedmont biofuels., “Piedmont biofuels.,” Pied- mont biofuels., 2014.spa
dc.relation.referencesL. M. Florez, “Biocombustibles de segunda ge- neración,” Universidad Autónoma de Occidente, Cali, Colombia, 2007.spa
dc.relation.referencesU. and F. Bariloche, “PEN 2010-2030,” UNAL Fund. Bariloche, 2009.spa
dc.relation.referencesJ.-M. Michelle and J.-P. Franc, Fundamentals of Cavitation. 2005.spa
dc.relation.referencesJ. Wang, J. Ji, Y. Li, Y. Yu, and Z. Xu, “Preparation of biodiesel with the help of ultrasonic and hydrodyna- mic cavitation,” Ultrasonics, pp. 411–414, 2006.spa
dc.relation.referencesA. Demirbas, “Comparison of transesterifica- tion methods for production of biodiesel from vegeta- ble oils and fats,” Elsevier, vol. 49, no. 1, pp. 125–130, 2008.spa
dc.relation.referencesE. M. Nada, “The Manufacture of Biodiesel from the used vegetable oil,” EISOIh, 2011.spa
dc.relation.referencesP. Castro, J. Coello, and L. Castillo, “Opciones para la producción y uso del biodiésel en el Perú,” Solu- ciones Prácticas - ITDG, 2007.spa
dc.relation.referencesM. C. Math, S. P. Kumar, and S. V. Chetty, “Te- chnologies for biodiesel production from used cooking oil — A review,” Energy Sustain. Dev., vol. 14, no. 4, pp. 339–345, 2010.spa
dc.relation.referencesH. Incorporated and P. Eisenberg, “Cavitation.”spa
dc.relation.referencesG. L. Maddikeri, P. R. Gogate, and A. B. Pandit, “Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil,” Fuel, vol. 137, pp. 285–292, 2014.spa
dc.relation.referencesL. F. Chuah, S. Yusup, A. R. Abd Aziz, A. Bokhari, and M. Z. Abdullah, “Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor,” J. Clean. Prod., vol. 112, pp. 4505–4514, 2016.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordAlternative Energiesspa
dc.subject.keywordSolarspa
dc.subject.keywordWindspa
dc.subject.keywordHydrospa
dc.subject.keywordGeothermalspa
dc.subject.keywordTidal energyspa
dc.subject.keywordHorizontal axis hydrokinetic turbinespa
dc.subject.keywordComputational Fluid Dynamics CFDspa
dc.subject.keywordANSYSspa
dc.subject.keywordComputational simulationspa
dc.subject.keywordRenewable energiesspa
dc.subject.keywordEnergy microgenerationspa
dc.subject.keywordPower coefficientspa
dc.subject.keywordTip speed ratiospa
dc.subject.keywordHydro energyspa
dc.subject.keywordBiomassspa
dc.subject.keywordBioenergyspa
dc.subject.keywordBiofuelsspa
dc.subject.keywordCellulolytic enzymesspa
dc.subject.keywordTrichoderma asperellumspa
dc.subject.keywordChrysanthemum wastespa
dc.subject.keywordIsothermal isoconversional methodsspa
dc.subject.keywordActivation energyspa
dc.subject.keywordMacadamia shellspa
dc.subject.keywordPyrolysisspa
dc.subject.keywordGasificationspa
dc.subject.lembEficienciaspa
dc.subject.lembAuditoría energéticaspa
dc.subject.lembEnergías Alternativasspa
dc.subject.lembEnergía hidráulicaspa
dc.subject.lembHidroeléctricaspa
dc.subject.lembEnergía solarspa
dc.subject.lembEnergía eólicaspa
dc.subject.lembEnergía hidráulicaspa
dc.subject.lembEnergía geotérmicaspa
dc.subject.lembEnergía mareomotrizspa
dc.subject.lembBiomasaspa
dc.subject.lembBioenergíaspa
dc.subject.lembBiocombustiblesspa
dc.subject.lembEficiencia energéticaspa
dc.subject.proposalVaporspa
dc.subject.proposalCiclo de vidaspa
dc.subject.proposalTemperaturaspa
dc.subject.proposalCambio Climáticospa
dc.subject.proposalClimaspa
dc.subject.proposalConvecciónspa
dc.subject.proposalDinámica Atmosféricaspa
dc.subject.proposalEmbalse El Peñol-Guatapéspa
dc.subject.proposalPatrón meteorológicospa
dc.subject.proposalImplementaciónspa
dc.subject.proposalAyuda didácticaspa
dc.subject.proposalBiodonantespa
dc.subject.proposalGeneración In Situspa
dc.subject.proposalTransferencia Catalíticaspa
dc.subject.proposalEtanolspa
dc.subject.proposalÁcido fórmicospa
dc.subject.proposalDiésel renovablespa
dc.subject.proposalHidrogenaciónspa
dc.subject.proposalAceite de palmaspa
dc.subject.proposalGeneración de hidrógeno in situspa
dc.subject.proposalMetales noblesspa
dc.subject.proposalCatalizadoresspa
dc.subject.proposalHidrotratamientospa
dc.subject.proposalAceite de Palmaspa
dc.subject.proposalAcción Catalíticaspa
dc.subject.proposalPirolisisspa
dc.subject.proposalPlásticosspa
dc.subject.proposalDiseño mecánicospa
dc.subject.proposalAceites lubricantes usadosspa
dc.subject.proposalBacterias sulfato-reductorasspa
dc.subject.proposalAcidificaciónspa
dc.subject.proposalReutilización de residuos peligrososspa
dc.subject.proposalCalidad de energíaspa
dc.subject.proposalSistemas fotovoltaicosspa
dc.subject.proposalRedes Neuronalesspa
dc.subject.proposalAprendizaje supervisadospa
dc.subject.proposalCavitación hidrodinámicaspa
dc.subject.proposalBiodieselspa
dc.subject.proposalPlaca orificiospa
dc.subject.proposalReactorspa
dc.subject.proposalDiseñospa
dc.titleConstruyendo la Energía sostenible en Colombiaspa
dc.type.categoryApropiación Social y Circulación del Conocimiento: Documento de trabajo (working papers)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
memorias4toces.pdf
Tamaño:
6.4 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones