Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales

Cargando...
Miniatura

Fecha

2022-06-30

Enlace al recurso

DOI

Google Scholar

Cvlac

gruplac

Descripción Dominio:

Título de la revista

ISSN de la revista

Título del volumen

Editor

Universidad Santo Tomás

Compartir

Documentos PDF
Cargando...
Miniatura

Resumen

Este proyecto se propone diseñar una red neuronal para el reconocimiento de melanomas (un tipo de cáncer de piel), mediante el uso de una técnica conocida como redes neuronales convolucionales, mayormente utilizada en visión artificial (una rama de la inteligencia artificial), aplicada en el reconocimiento de patrones sobre lunares en la piel y determinar la existencia de un melanoma maligno, o no, a partir de un dataset limitado. Para esto, la red convolucional diseñada y entrenada para clasificar los melanomas está formada por unas capas de convolución y pooling apiladas entre sí para formar la red propuesta, una “fully connected layer” y un clasificador con 1 o 2 salidas, y es parametrizada con diferentes valores en características como el dropout, el tamaño de los filtros, entre otros, realizando los entrenamientos en 5 diferentes etapas o experimentos. El dataset propuesto para el entrenamiento de la CNN (Convolutional Neural Networks) es la colección pública más grande de imágenes demoscópicas de lesiones en la piel, proveída de manera gratuita por “International Skin Imaging Collaboration (ISIC)”, un esfuerzo por mejorar el diagnóstico de melanomas, patrocinado por la “International Society for Digital Imaging of the Skin (ISDIS)”. El propósito de este proyecto es diseñar una red neuronal convolucional con alto nivel de precisión que ayude a los profesionales en medicina con el diagnóstico de melanomas, en este caso fue posible conseguir una precisión de hasta 87.82% con la red diseñada con mejor rendimiento.

Abstract

This project aims to design a neural network for the recognition of melanomas (a type of skin cancer), through the use of a technique known as convolutional neural networks, mostly used in artificial vision (a branch of artificial intelligence), applied in the recognition of patterns on moles on the skin and determine the existence of a malignant melanoma, or not, from a limited dataset. For this, the convolutional network designed and trained to classify melanomas is made up of convolution and pooling layers stacked together to form the proposed network, a "fully connected layer" and a classifier with 1 or 2 outputs, and is parameterized with different values ​​in characteristics such as the dropout, the size of the filters, among others, performing the training in 5 different stages or experiments. The dataset proposed for the training of CNN (Convolutional Neural Networks) is the largest public collection of demoscopic images of skin lesions, provided free of charge by the "International Skin Imaging Collaboration (ISIC)", an effort to improve the diagnosis of melanomas, sponsored by the “International Society for Digital Imaging of the Skin (ISDIS)”. The purpose of this project is to design a convolutional neural network with a high level of precision that helps medical professionals with the diagnosis of melanomas, in this case it was possible to achieve an accuracy of up to 87.82% with the network designed with the best performance.

Idioma

spa

Palabras clave

Citación

Riaño Borda, S. (2022). Detección de melanomas de piel malignos mediante procesamiento digital de imágenes usando redes neuronales convolucionales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio institucional.

Licencia Creative Commons

Atribución 2.5 Colombia
Atribución 2.5 Colombia
Atribución 2.5 Colombia