Sistema de detección y reconocimiento de rostro para imágenes que contienen múltiples personas

dc.contributor.advisorPérez Gordillo, Fabián Eduardospa
dc.contributor.advisorPérez Hernández, Andrea Katherinspa
dc.contributor.advisorQuintero Peña, Carlos Andresspa
dc.contributor.authorValdez Galindo, Laura Nataliaspa
dc.contributor.corporatenameUniversidad Santo Tomás
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001516111spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=vncSAb0AAAAJ&hl=esspa
dc.contributor.orcidhttps://orcid.org/0000-0002-2746-8733spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2018-12-10T14:54:37Zspa
dc.date.available2018-12-10T14:54:37Zspa
dc.date.issued2018spa
dc.descriptionEn las últimas décadas, muchas aplicaciones requieren interactuar automáticamente con los usuarios, y la necesidad de que este tipo de aplicaciones tengan la capacidad de obtener la información acerca del usuario es imprescindible. Motivo por lo cual en este proyecto se desarrolló un sistema de procesamiento de imágenes en el cual detecte y reconozca rostros en imágenes digitales. Para el sistema de detección de implemento el método de Viola y Jones, obteniendo como resultado una tasa de detección mayor al 80% al evaluar 100 imágenes con 277 personas en ellas y para el sistema de reconocimiento se realizó una comparación entre LBPH Eigenfaces y Fisherfaces, en el cual con una tasa de reconocimiento de 70% se seleccionó Eigenfaces.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationValdez Galindo, L. N. (2018). Sistema de detección y reconocimiento de rostro para imágenes que contienen múltiples personas. [Trabajo de pregrado, Universidad Santo Tomás. Repositorio Institucional]spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.topographicT.I.E V14si 2018spa
dc.identifier.urihttp://hdl.handle.net/11634/14618
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesAfifi, M., and Abdelhamed, A. A f4: Deep gender classi cation based on adaboost-based fusion of isolated facial features and foggy faces. arXiv preprint arXiv:1706.04277 (2017).spa
dc.relation.referencesAlabbasi, A., and Moldoveanu, F. Human face detection from images, based on skin color. IEEE 18th ICSTCC (Oct. 2014), 532{537.spa
dc.relation.referencesAnggraini, D. Face recognition using principal component analysis and self organizing maps. IEEE ICT-ISPC2014 (2014), 91{94.spa
dc.relation.referencesBorade, S., Deshmukh, R., and Ramu, S. Face recognition using fusion of pca and lda: Borda count approach. IEEE 24th MED (June 2016).spa
dc.relation.referencesCheffou, F. Un programa de reconocimiento facial del fbi permiti o identi car al 'hombre del sombrero', europa press, Disponible en internet. URL:. urlhttp://www.europapress.es/internacional/noticia-programa-reconocimientofacial- fbi-ermitio-identi car-hombre-sombrero-20160415100158.htm, Abr 2016. Accedido 23-08-2017.spa
dc.relation.referencesChengyuan, L., Ting, Z., Dongsheng, D., and Chongshan, L. Design and application of compound kernel-pca algorithm in face recognition. 35th Chinese Control Conference (July 2016), 4122{4126.spa
dc.relation.referencesCorporation, I. Open Source Computer Vision Library. opencv, 2017. https: //opencv.org/.spa
dc.relation.referencesEdiziones, P. Nueva york utilizar a el reconocimiento facial para atrapar terroristas, Portaltic europa press, Disponible en internet. URL:. urlhttp://http://www.europapress.es/portaltic/sector/noticia-nueva-yorkutilizara- reconocimiento-facialatrapar-terroristas-20161007171657.html , Oct 2016. Accedido 23-08-2017.spa
dc.relation.referencesFarrugia, N., Mamalet, F., Roux, S., Yang, F., and Paindavoine, M. Design of real-time face detection parallel architecture using high level systhensis. Hindawi Publishing Corporation 8 (Nov. 2008).spa
dc.relation.referencesGimeno, R. Estudio de t ecnicas de reconocimiento facial. Un. Polit ecnica, Cat, Barc, Es (May 2010).spa
dc.relation.referencesGourier, N., Hall, D., and Crowley, J. L. Estimating face orientation from robust detection of salient facial features. ICPR, International Workshop on Visual Observation of Deictic Gestures (2004).spa
dc.relation.referencesGuevara, M., and Ardila, W. Deteccion de rostros en imagenes digitales usando clasi cadores en cascada. Scientia et Technica A~no XIV (Jun 2008).spa
dc.relation.referencesGuo, J., Lin, C., nad C. Chang, M. W., and Lee, H. Complexity reduced face detection using probability-based face mask pre ltering and pixel-based hierarchical-feature adaboosting. IEEE Signal Processing Letters 18 (Aug. 2011), 447{450.spa
dc.relation.referencesHuang, Y., and Chen, S. A geometrical-model-based face recognition. IEEE ICIP (2015), 3106{3110.spa
dc.relation.referencesJain, V., and Learned-Miller, E. Fddb: A benchmark for face detection in unconstrained settings. Tech. Rep. UM-CS-2010-009, University of Massachusetts, Amherst, 2010.spa
dc.relation.referencesJun, Z., Jizhao, H., Zhenglan, T., and Feng, W. Face detection based on lbp. 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI) (Oct 2017), 421{425.spa
dc.relation.referenceskeith Bedfaro. Polic a de nueva york utilizar a autom oviles inteligentes para optimizar su trabajo Grupogreek, Disponible en internet. URL:. urlhttp://http://grupogeek.com/policia-de-nueva-york-utilizaraautomoviles- inteligentes-para-optimizar-su-trabajo, 2013. Accedido 20-08-2017.spa
dc.relation.referencesKumar, R. Eye center localization using cascaded corner detection and geometrical measuments algorithm. IEEE (2015).spa
dc.relation.referencesL. Zhang, R. Chu, S. X., and Liao, S. Face detection based on multi-block lbp representation. in Advance in Biometrics: Lecture Notes in Computer ScienceSpringer Berlin Heidelberg (2007).spa
dc.relation.referencesLang, L., and Gu, W. Study of face detection algorithm for real-time face detection system. IEEE 2nd ISECS (2009), 129{132.spa
dc.relation.referencesLee, K., Ho, J., and Kriegman, D. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intelligence 27, 5 (2005), 684{698.spa
dc.relation.referencesLenc, L., and Kr al, P. Unconstrained Facial Images: Database for face recognition under real-world conditions.spa
dc.relation.referencesLin, C., and Lin, S. E cient face detection method with eye region judgment. EURASIP Int J Image Video Process (2013), 1{14.spa
dc.relation.referencesMahdi, S., Menhaj, M., and Hormat, M. A new feature extraction based on advanced pca for real time face recognition. IEEE 13th IFSC (2013).spa
dc.relation.referencesMarciniak, T., Chmielewska, A., Weychan, R., Parzych, M., and Da- browski, A. In uence of low resolution of images on reliability of face detection and recognition. Multimed Tools Appl 74 (July 2013), 4329{4349.spa
dc.relation.referencesMarques, O. Practical Image and Video Processing Using Matlab. Pres A John Wiley and Sons.INC.,Publications, Floria, Atlantic, 2011.spa
dc.relation.referencesMartin Koestinger, Paul Wohlhart, P. M. R., and Bischof, H. Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. Tech. rep., 2011.spa
dc.relation.referencesMartinez, A., and Benavente, R. The ar face database. CVC Technical Report (1998).spa
dc.relation.referencesMATLAB. MATLAB 2017 version 2.1. The MathWorks Inc, 2017. https: //www.mathworks.com.spa
dc.relation.referencesMicrosoft. Microsoft Visual Studio. Itaniu, 2017. https://www.visualstudio. com/es/.spa
dc.relation.referencesMilborrow, S., Morkel, J., and Nicolls, F. The MUCT Landmarked Face Database. Pattern Recognition Association of South Africa (2010). http: //www.milbo.org/muct.spa
dc.relation.referencesMishra1, A., Kumar, K., Rai, S., and Mittal, K. Multi-stage face recognition for biometric access. IEEE INDICON (2011), 1{6.spa
dc.relation.referencesOyj, G. QT. Qt Development Frameworks, 2017. https://www1.qt.io/es/spa
dc.relation.referencesPadmapriya, S., and KalaJames, E. Real time smart car lock security system using face detection and recognition. ICCCI (Jan. 2012).spa
dc.relation.referencesPagliery, J. El fbi lanza un poderoso sistema de reconocimiento facial, CNNEspa~nol, Disponible en internet. URL:. urlhttp://http://cnnespanol.cnn.com/2014/09/17/el-fbi-lanza-un-poderososistema- de-reconocimiento-facial , Sep 2014. Accedido 23-08-2017.spa
dc.relation.referencesPaul, V., and Jones, M. Robust real-time face detection. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001).spa
dc.relation.referencesPisa, K. El terrorismo mundial aument o en un 80% en 2014, seg un informe CNNEspa~nol Disponible en internet. URL:. urlhttp://http://cnnespanol.cnn.com/2015/11/18/elterrorismomundialaumentoen- un-80-en-2014-segun-informe/ash, Nov 2015. Accedido 22-08-2017.spa
dc.relation.referencesRama, A., and Tarr es, F. Un nuevo m etodo para la detecci on de caras basado en integrales difusas. Un. Polit ecnica, Cat, Barc, Es (2016).spa
dc.relation.referencesSeo, J. J., Kim, H. I., and Ro, Y. M. Pose-robust and discriminative feature representation by multi-task deep learning for multi-view face recognition. 2015 IEEE International Symposium on Multimedia (ISM) (Dec 2015), 166{171.spa
dc.relation.referencesShailaja, K., and Anuradha, B. E ective face recognition using deep learning based linear discriminant classi cation. 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (Dec 2016), 1{6.spa
dc.relation.referencesSharma, H., Saurav, S., Singh, S., Saini, A., and Saini, R. Analyzing impact of image scaling algorithms on viola-jones face detection framework. IEEE ICACCI (2005), 1715{1718.spa
dc.relation.referencesS.Shwartz, and Davids, S. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, US, 2014.spa
dc.relation.references.Talele, K., and Kadam, S. Face detection and geometric face normalization. IEEE TENCON (2015).spa
dc.relation.referencesvan Beek, L., Holz, D., Matamoros, M., Rascon, C., , and Wachsmuth, S. Robocup@home 2017: Rules and regulations. http://www.robocupathome. org/rules/2017_rulebook.pdf, 2017.spa
dc.relation.referencesWang, B., Chang, X., and Liu, C. A robust method for skin detection and segmentation of human face. IEEE 2nd ICINISs (2009), 290{293.spa
dc.relation.referencesWang, X., Wang, L., Lei, T., and Wang, C. Face detection based on improved skin model and local iterated conditional modes. IEEE 11th ICNC (2015), 964{970.spa
dc.relation.referencesW.Chen, Sun, T., Yang, X., and Wang, L. Face detection based on half face-template. IEEE ICEMI (2009), 54{58.spa
dc.relation.referencesZhao, X., and Wei, C. A real-time face recognition system based on the improved lbph algorithm. 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP) (2017), 72{76.spa
dc.relation.referencesZheng, Y., and Yao, J. Multi-angle face detection base on dp-adaboost. IJAC 12 (Aug. 2015), 421{431.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordImage processingspa
dc.subject.keywordDigital Electronic Instrumentsspa
dc.subject.keywordFace perceptionspa
dc.subject.lembProcesamiento Digital de Imágenesspa
dc.subject.lembElectrónica Digitalspa
dc.subject.lembInstrumentos Electrónicos Digitalesspa
dc.subject.lembProgramas para Computador -- Percepción de Carasspa
dc.subject.proposalDetecciónspa
dc.subject.proposalReconocimientospa
dc.subject.proposalCaras propiasspa
dc.subject.proposalCaras Fisherspa
dc.subject.proposalLBPHspa
dc.titleSistema de detección y reconocimiento de rostro para imágenes que contienen múltiples personasspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2018lauravaldez.pdf
Tamaño:
21.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
cartadeautorización.pdf
Tamaño:
609 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
Menciónmeritoria.pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
derechosdeautor.pdf
Tamaño:
527.01 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: