Sistema de detección y reconocimiento de rostro para imágenes que contienen múltiples personas
dc.contributor.advisor | Pérez Gordillo, Fabián Eduardo | spa |
dc.contributor.advisor | Pérez Hernández, Andrea Katherin | spa |
dc.contributor.advisor | Quintero Peña, Carlos Andres | spa |
dc.contributor.author | Valdez Galindo, Laura Natalia | spa |
dc.contributor.corporatename | Universidad Santo Tomás | |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001516111 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=vncSAb0AAAAJ&hl=es | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-2746-8733 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2018-12-10T14:54:37Z | spa |
dc.date.available | 2018-12-10T14:54:37Z | spa |
dc.date.issued | 2018 | spa |
dc.description | En las últimas décadas, muchas aplicaciones requieren interactuar automáticamente con los usuarios, y la necesidad de que este tipo de aplicaciones tengan la capacidad de obtener la información acerca del usuario es imprescindible. Motivo por lo cual en este proyecto se desarrolló un sistema de procesamiento de imágenes en el cual detecte y reconozca rostros en imágenes digitales. Para el sistema de detección de implemento el método de Viola y Jones, obteniendo como resultado una tasa de detección mayor al 80% al evaluar 100 imágenes con 277 personas en ellas y para el sistema de reconocimiento se realizó una comparación entre LBPH Eigenfaces y Fisherfaces, en el cual con una tasa de reconocimiento de 70% se seleccionó Eigenfaces. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Electronico | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Valdez Galindo, L. N. (2018). Sistema de detección y reconocimiento de rostro para imágenes que contienen múltiples personas. [Trabajo de pregrado, Universidad Santo Tomás. Repositorio Institucional] | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.topographic | T.I.E V14si 2018 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/14618 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Electrónica | spa |
dc.publisher.program | Pregrado Ingeniería Electrónica | spa |
dc.relation.references | Afifi, M., and Abdelhamed, A. A f4: Deep gender classi cation based on adaboost-based fusion of isolated facial features and foggy faces. arXiv preprint arXiv:1706.04277 (2017). | spa |
dc.relation.references | Alabbasi, A., and Moldoveanu, F. Human face detection from images, based on skin color. IEEE 18th ICSTCC (Oct. 2014), 532{537. | spa |
dc.relation.references | Anggraini, D. Face recognition using principal component analysis and self organizing maps. IEEE ICT-ISPC2014 (2014), 91{94. | spa |
dc.relation.references | Borade, S., Deshmukh, R., and Ramu, S. Face recognition using fusion of pca and lda: Borda count approach. IEEE 24th MED (June 2016). | spa |
dc.relation.references | Cheffou, F. Un programa de reconocimiento facial del fbi permiti o identi car al 'hombre del sombrero', europa press, Disponible en internet. URL:. urlhttp://www.europapress.es/internacional/noticia-programa-reconocimientofacial- fbi-ermitio-identi car-hombre-sombrero-20160415100158.htm, Abr 2016. Accedido 23-08-2017. | spa |
dc.relation.references | Chengyuan, L., Ting, Z., Dongsheng, D., and Chongshan, L. Design and application of compound kernel-pca algorithm in face recognition. 35th Chinese Control Conference (July 2016), 4122{4126. | spa |
dc.relation.references | Corporation, I. Open Source Computer Vision Library. opencv, 2017. https: //opencv.org/. | spa |
dc.relation.references | Ediziones, P. Nueva york utilizar a el reconocimiento facial para atrapar terroristas, Portaltic europa press, Disponible en internet. URL:. urlhttp://http://www.europapress.es/portaltic/sector/noticia-nueva-yorkutilizara- reconocimiento-facialatrapar-terroristas-20161007171657.html , Oct 2016. Accedido 23-08-2017. | spa |
dc.relation.references | Farrugia, N., Mamalet, F., Roux, S., Yang, F., and Paindavoine, M. Design of real-time face detection parallel architecture using high level systhensis. Hindawi Publishing Corporation 8 (Nov. 2008). | spa |
dc.relation.references | Gimeno, R. Estudio de t ecnicas de reconocimiento facial. Un. Polit ecnica, Cat, Barc, Es (May 2010). | spa |
dc.relation.references | Gourier, N., Hall, D., and Crowley, J. L. Estimating face orientation from robust detection of salient facial features. ICPR, International Workshop on Visual Observation of Deictic Gestures (2004). | spa |
dc.relation.references | Guevara, M., and Ardila, W. Deteccion de rostros en imagenes digitales usando clasi cadores en cascada. Scientia et Technica A~no XIV (Jun 2008). | spa |
dc.relation.references | Guo, J., Lin, C., nad C. Chang, M. W., and Lee, H. Complexity reduced face detection using probability-based face mask pre ltering and pixel-based hierarchical-feature adaboosting. IEEE Signal Processing Letters 18 (Aug. 2011), 447{450. | spa |
dc.relation.references | Huang, Y., and Chen, S. A geometrical-model-based face recognition. IEEE ICIP (2015), 3106{3110. | spa |
dc.relation.references | Jain, V., and Learned-Miller, E. Fddb: A benchmark for face detection in unconstrained settings. Tech. Rep. UM-CS-2010-009, University of Massachusetts, Amherst, 2010. | spa |
dc.relation.references | Jun, Z., Jizhao, H., Zhenglan, T., and Feng, W. Face detection based on lbp. 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI) (Oct 2017), 421{425. | spa |
dc.relation.references | keith Bedfaro. Polic a de nueva york utilizar a autom oviles inteligentes para optimizar su trabajo Grupogreek, Disponible en internet. URL:. urlhttp://http://grupogeek.com/policia-de-nueva-york-utilizaraautomoviles- inteligentes-para-optimizar-su-trabajo, 2013. Accedido 20-08-2017. | spa |
dc.relation.references | Kumar, R. Eye center localization using cascaded corner detection and geometrical measuments algorithm. IEEE (2015). | spa |
dc.relation.references | L. Zhang, R. Chu, S. X., and Liao, S. Face detection based on multi-block lbp representation. in Advance in Biometrics: Lecture Notes in Computer ScienceSpringer Berlin Heidelberg (2007). | spa |
dc.relation.references | Lang, L., and Gu, W. Study of face detection algorithm for real-time face detection system. IEEE 2nd ISECS (2009), 129{132. | spa |
dc.relation.references | Lee, K., Ho, J., and Kriegman, D. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intelligence 27, 5 (2005), 684{698. | spa |
dc.relation.references | Lenc, L., and Kr al, P. Unconstrained Facial Images: Database for face recognition under real-world conditions. | spa |
dc.relation.references | Lin, C., and Lin, S. E cient face detection method with eye region judgment. EURASIP Int J Image Video Process (2013), 1{14. | spa |
dc.relation.references | Mahdi, S., Menhaj, M., and Hormat, M. A new feature extraction based on advanced pca for real time face recognition. IEEE 13th IFSC (2013). | spa |
dc.relation.references | Marciniak, T., Chmielewska, A., Weychan, R., Parzych, M., and Da- browski, A. In uence of low resolution of images on reliability of face detection and recognition. Multimed Tools Appl 74 (July 2013), 4329{4349. | spa |
dc.relation.references | Marques, O. Practical Image and Video Processing Using Matlab. Pres A John Wiley and Sons.INC.,Publications, Floria, Atlantic, 2011. | spa |
dc.relation.references | Martin Koestinger, Paul Wohlhart, P. M. R., and Bischof, H. Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. Tech. rep., 2011. | spa |
dc.relation.references | Martinez, A., and Benavente, R. The ar face database. CVC Technical Report (1998). | spa |
dc.relation.references | MATLAB. MATLAB 2017 version 2.1. The MathWorks Inc, 2017. https: //www.mathworks.com. | spa |
dc.relation.references | Microsoft. Microsoft Visual Studio. Itaniu, 2017. https://www.visualstudio. com/es/. | spa |
dc.relation.references | Milborrow, S., Morkel, J., and Nicolls, F. The MUCT Landmarked Face Database. Pattern Recognition Association of South Africa (2010). http: //www.milbo.org/muct. | spa |
dc.relation.references | Mishra1, A., Kumar, K., Rai, S., and Mittal, K. Multi-stage face recognition for biometric access. IEEE INDICON (2011), 1{6. | spa |
dc.relation.references | Oyj, G. QT. Qt Development Frameworks, 2017. https://www1.qt.io/es/ | spa |
dc.relation.references | Padmapriya, S., and KalaJames, E. Real time smart car lock security system using face detection and recognition. ICCCI (Jan. 2012). | spa |
dc.relation.references | Pagliery, J. El fbi lanza un poderoso sistema de reconocimiento facial, CNNEspa~nol, Disponible en internet. URL:. urlhttp://http://cnnespanol.cnn.com/2014/09/17/el-fbi-lanza-un-poderososistema- de-reconocimiento-facial , Sep 2014. Accedido 23-08-2017. | spa |
dc.relation.references | Paul, V., and Jones, M. Robust real-time face detection. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001). | spa |
dc.relation.references | Pisa, K. El terrorismo mundial aument o en un 80% en 2014, seg un informe CNNEspa~nol Disponible en internet. URL:. urlhttp://http://cnnespanol.cnn.com/2015/11/18/elterrorismomundialaumentoen- un-80-en-2014-segun-informe/ash, Nov 2015. Accedido 22-08-2017. | spa |
dc.relation.references | Rama, A., and Tarr es, F. Un nuevo m etodo para la detecci on de caras basado en integrales difusas. Un. Polit ecnica, Cat, Barc, Es (2016). | spa |
dc.relation.references | Seo, J. J., Kim, H. I., and Ro, Y. M. Pose-robust and discriminative feature representation by multi-task deep learning for multi-view face recognition. 2015 IEEE International Symposium on Multimedia (ISM) (Dec 2015), 166{171. | spa |
dc.relation.references | Shailaja, K., and Anuradha, B. E ective face recognition using deep learning based linear discriminant classi cation. 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (Dec 2016), 1{6. | spa |
dc.relation.references | Sharma, H., Saurav, S., Singh, S., Saini, A., and Saini, R. Analyzing impact of image scaling algorithms on viola-jones face detection framework. IEEE ICACCI (2005), 1715{1718. | spa |
dc.relation.references | S.Shwartz, and Davids, S. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, US, 2014. | spa |
dc.relation.references | .Talele, K., and Kadam, S. Face detection and geometric face normalization. IEEE TENCON (2015). | spa |
dc.relation.references | van Beek, L., Holz, D., Matamoros, M., Rascon, C., , and Wachsmuth, S. Robocup@home 2017: Rules and regulations. http://www.robocupathome. org/rules/2017_rulebook.pdf, 2017. | spa |
dc.relation.references | Wang, B., Chang, X., and Liu, C. A robust method for skin detection and segmentation of human face. IEEE 2nd ICINISs (2009), 290{293. | spa |
dc.relation.references | Wang, X., Wang, L., Lei, T., and Wang, C. Face detection based on improved skin model and local iterated conditional modes. IEEE 11th ICNC (2015), 964{970. | spa |
dc.relation.references | W.Chen, Sun, T., Yang, X., and Wang, L. Face detection based on half face-template. IEEE ICEMI (2009), 54{58. | spa |
dc.relation.references | Zhao, X., and Wei, C. A real-time face recognition system based on the improved lbph algorithm. 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP) (2017), 72{76. | spa |
dc.relation.references | Zheng, Y., and Yao, J. Multi-angle face detection base on dp-adaboost. IJAC 12 (Aug. 2015), 421{431. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Image processing | spa |
dc.subject.keyword | Digital Electronic Instruments | spa |
dc.subject.keyword | Face perception | spa |
dc.subject.lemb | Procesamiento Digital de Imágenes | spa |
dc.subject.lemb | Electrónica Digital | spa |
dc.subject.lemb | Instrumentos Electrónicos Digitales | spa |
dc.subject.lemb | Programas para Computador -- Percepción de Caras | spa |
dc.subject.proposal | Detección | spa |
dc.subject.proposal | Reconocimiento | spa |
dc.subject.proposal | Caras propias | spa |
dc.subject.proposal | Caras Fisher | spa |
dc.subject.proposal | LBPH | spa |
dc.title | Sistema de detección y reconocimiento de rostro para imágenes que contienen múltiples personas | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 4 de 4
Cargando...
- Nombre:
- 2018lauravaldez.pdf
- Tamaño:
- 21.12 MB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- cartadeautorización.pdf
- Tamaño:
- 609 KB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- Menciónmeritoria.pdf
- Tamaño:
- 1.22 MB
- Formato:
- Adobe Portable Document Format
- Descripción:

- Nombre:
- derechosdeautor.pdf
- Tamaño:
- 527.01 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: