Analytical Evaluation of the Integral of Any Order Polynomials on Tetrahedral Regions

dc.contributor.authorMurillo Acevedo, Mao Tsetungspa
dc.contributor.authorCarrillo Escobar, Julio Cesarspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000371572spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000680125spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=Ey5lCQ4AAAAJspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=gwglMHgAAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0002-9056-1359spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-06-09T23:00:49Zspa
dc.date.available2020-06-09T23:00:49Zspa
dc.date.issued2017-10-26spa
dc.description.abstractThis paper presents an analytical method to set out the integral of any polynomial function f(x, y,z) on a tetrahedral region T by using its four vertexes. The method uses a coordinate transformation which involves the four vertexes of the tetrahedron, whose Jacobian is simple. The last integral is not difficult to solve given that recurrence formula is very simple, furthermore we have developed an algorithm which can evaluate the integral when integrating function is generated by several multiplications of polynomials without necessity of develop the products. This method can be used in finite element method because the most functions involved in this method are polynomial ones. The method here presented is faster than Gauss-Legendre quadrature or n order if the amount of monomials present on f(x, y,z) is least than n3spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMurillo, M., & Carrillo Escobar, J. (2017). Analytical Evaluation of the Integral of Any Order Polynomials on Tetrahedral Regions. Applied Mathematics & Information Sciences, 11, 1789-1793. https://doi.org/10.18576/amis/110626spa
dc.identifier.doihttp://dx.doi.org/10.18576/amis/110626spa
dc.identifier.urihttp://hdl.handle.net/11634/24013
dc.relation.referencesR.M Solow, Quarterly Journal of Economics 70, 65-94 (1956).spa
dc.relation.referencesJian-Ming Jin, The Finite element Method in Electromagnetics John Wiley & Sons 2014spa
dc.relation.referencesMichael Evans, Timothy Swartz, Approximating Integrals via Monte Carlo and Deterministic Methods, OUP Oxford, 2000spa
dc.relation.referencesPhilip J. Davis, Philip Rabinowitz, Methods of Numerical Integration, Courier Corporation, 2007spa
dc.relation.referencesPhilip J. Davis, Philip Rabinowitz, Nodal High-Order Methods on Unstructured Grids I. Time-Domain Solution of Maxwell?s Equations, Elsevier Science, Journal of Computational Physics, 186?221 2002spa
dc.relation.referencesC.A. Duarte, I. Babuˇska , J.T. Oden, Generalized finite element methods for three-dimensional structural mechanics problems, Computers and Structures, 215-232 2000spa
dc.relation.referencesK. T. Shivaram, Numerical Integration Over An Arbitrary Rectangle And Square Region Using Generalised Gaussian Quadrature Rules, International Journal of Mathematical Archive- 5(5) 1, 2014,spa
dc.relation.referencesK. T. Shivaram, Generalised Gaussian Quadrature over a triangle, American Journal of Engineering Research 2, 290- 293 2013spa
dc.relation.referencesM. Alamgir Hossain 1 and Md. Shafiqul Islam, Generalized Composite Numerical Integration Rule Over a Polygon Using Gaussian Quadrature, Dhaka Univ. J. Sci, 25-29 2014spa
dc.relation.referencesH. T. Rathod and B. Venkatesh, Gauss Legendre ? Gauss Jacobi Quadrature Rules over a Tetrahedral Region, Int. Journal of Math. Analysis 5, 189-198 2011spa
dc.relation.referencesRichard L. Burden and J. Douglas Faires, Numerical Analysis, Cengage Learning, 2010spa
dc.relation.referencesSergei Shabanov, Concepts in Calculus III Multivariable Calculus, Beta Version, University Press of Florida, 2012spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordGeral tetrahedronspa
dc.subject.keywordAnalytical integrationspa
dc.subject.keywordPolynomial functionsspa
dc.subject.keywordFinite element methodsspa
dc.subject.keywordAlgorithmspa
dc.subject.lembMétodo de elementos finitosspa
dc.subject.lembAlgoritmosspa
dc.titleAnalytical Evaluation of the Integral of Any Order Polynomials on Tetrahedral Regionsspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
952xj7t7vw8as5.pdf
Tamaño:
301.1 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: