Analytical Evaluation of the Integral of Any Order Polynomials on Tetrahedral Regions
dc.contributor.author | Murillo Acevedo, Mao Tsetung | spa |
dc.contributor.author | Carrillo Escobar, Julio Cesar | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000371572 | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000680125 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?hl=es&user=Ey5lCQ4AAAAJ | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?hl=es&user=gwglMHgAAAAJ | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-9056-1359 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-06-09T23:00:49Z | spa |
dc.date.available | 2020-06-09T23:00:49Z | spa |
dc.date.issued | 2017-10-26 | spa |
dc.description.abstract | This paper presents an analytical method to set out the integral of any polynomial function f(x, y,z) on a tetrahedral region T by using its four vertexes. The method uses a coordinate transformation which involves the four vertexes of the tetrahedron, whose Jacobian is simple. The last integral is not difficult to solve given that recurrence formula is very simple, furthermore we have developed an algorithm which can evaluate the integral when integrating function is generated by several multiplications of polynomials without necessity of develop the products. This method can be used in finite element method because the most functions involved in this method are polynomial ones. The method here presented is faster than Gauss-Legendre quadrature or n order if the amount of monomials present on f(x, y,z) is least than n3 | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Murillo, M., & Carrillo Escobar, J. (2017). Analytical Evaluation of the Integral of Any Order Polynomials on Tetrahedral Regions. Applied Mathematics & Information Sciences, 11, 1789-1793. https://doi.org/10.18576/amis/110626 | spa |
dc.identifier.doi | http://dx.doi.org/10.18576/amis/110626 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/24013 | |
dc.relation.references | R.M Solow, Quarterly Journal of Economics 70, 65-94 (1956). | spa |
dc.relation.references | Jian-Ming Jin, The Finite element Method in Electromagnetics John Wiley & Sons 2014 | spa |
dc.relation.references | Michael Evans, Timothy Swartz, Approximating Integrals via Monte Carlo and Deterministic Methods, OUP Oxford, 2000 | spa |
dc.relation.references | Philip J. Davis, Philip Rabinowitz, Methods of Numerical Integration, Courier Corporation, 2007 | spa |
dc.relation.references | Philip J. Davis, Philip Rabinowitz, Nodal High-Order Methods on Unstructured Grids I. Time-Domain Solution of Maxwell?s Equations, Elsevier Science, Journal of Computational Physics, 186?221 2002 | spa |
dc.relation.references | C.A. Duarte, I. Babuˇska , J.T. Oden, Generalized finite element methods for three-dimensional structural mechanics problems, Computers and Structures, 215-232 2000 | spa |
dc.relation.references | K. T. Shivaram, Numerical Integration Over An Arbitrary Rectangle And Square Region Using Generalised Gaussian Quadrature Rules, International Journal of Mathematical Archive- 5(5) 1, 2014, | spa |
dc.relation.references | K. T. Shivaram, Generalised Gaussian Quadrature over a triangle, American Journal of Engineering Research 2, 290- 293 2013 | spa |
dc.relation.references | M. Alamgir Hossain 1 and Md. Shafiqul Islam, Generalized Composite Numerical Integration Rule Over a Polygon Using Gaussian Quadrature, Dhaka Univ. J. Sci, 25-29 2014 | spa |
dc.relation.references | H. T. Rathod and B. Venkatesh, Gauss Legendre ? Gauss Jacobi Quadrature Rules over a Tetrahedral Region, Int. Journal of Math. Analysis 5, 189-198 2011 | spa |
dc.relation.references | Richard L. Burden and J. Douglas Faires, Numerical Analysis, Cengage Learning, 2010 | spa |
dc.relation.references | Sergei Shabanov, Concepts in Calculus III Multivariable Calculus, Beta Version, University Press of Florida, 2012 | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Geral tetrahedron | spa |
dc.subject.keyword | Analytical integration | spa |
dc.subject.keyword | Polynomial functions | spa |
dc.subject.keyword | Finite element methods | spa |
dc.subject.keyword | Algorithm | spa |
dc.subject.lemb | Método de elementos finitos | spa |
dc.subject.lemb | Algoritmos | spa |
dc.title | Analytical Evaluation of the Integral of Any Order Polynomials on Tetrahedral Regions | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |