Estado del arte sobre metodologías el acotamiento de rondas hídricas.

dc.contributor.advisorRomán Botero, Ricardo
dc.contributor.authorTorres Albarracin, Jessica Alejandra
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.orcidhttps://orcid.org/ 0000-0002-5273-8395spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2022-07-25T14:22:53Z
dc.date.available2022-07-25T14:22:53Z
dc.date.issued2022-07-21
dc.descriptionLa ronda hídrica es conocida como zona riparia o ribereña, región de transición y de interacciones entre los medios terrestre y acuático, es decir, un ecotono. En tal sentido, son las franjas contiguas a los cuerpos de agua naturales continentales, estén en movimiento (ríos, quebradas, arroyos) o relativamente estancados (lagos, lagunas, pantanos, esteros), y el flujo sea continuo, periódico o eventual durante el año hidrológico (Swanson et al., 1988). A partir de ello nace la necesidad de establecer parámetros para su acotamiento, función que deben cumplir las Autoridades Ambientales competentes, teniendo en cuenta los criterios geomorfológicos, hidrológicos y ecosistémicos, establecidos en la Guía Técnica de Criterios para el Acotamiento de las Rondas Hídricas en Colombia, establecida en el Decreto 2245 de 2017. Este estado del arte aborda diferentes metodologías utilizadas para el acotamiento de las rondas hídricas a nivel global y local.spa
dc.description.abstractThe watershed is known as a riparian zone, a region of transition and interaction between the terrestrial and aquatic environments, i.e., an ecotone. In this sense, they are the strips contiguous to inland natural water bodies, whether they are in movement (rivers, streams, creeks) or relatively stagnant (lakes, lagoons, marshes, estuaries), and whether the flow is continuous, periodic or eventual during the hydrological year (Swanson et al., 1988). From this arises the need to establish parameters for their delimitation, a function that must be fulfilled by the competent Environmental Authorities, taking into account the geomorphological, hydrological and ecosystemic criteria, established in the Technical Guide of Criteria for the Delimitation of Water Rounds in Colombia, established in Decree 2245 of 2017. This state of the art addresses different methodologies used for the delineation of water courses at the global and local levels.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationTorres Albarracin, J. A. (2022). Estado del arte sobre metodologías el acotamiento de rondas hídricas. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/46029
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.relation.referencesAdnan, M. S. G., Dewan, A., Zannat, K. E., & Abdullah, A. Y. M. (2019). The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu River basins of Bangladesh. Natural Hazards, 99(1), 425–448. https://doi.org/10.1007/s11069-019-03749-3spa
dc.relation.referencesAlexander, G., & Mendivelso, R. (2020). Determinación de la superficie de inundación del río Bogotá en el sector de la Universidad Militar Nueva Granada - sede campus Cajicá.spa
dc.relation.referencesAlipour, A., Jafarzadegan, K., & Moradkhani, H. (2022). Global sensitivity analysis in hydrodynamic modeling and flood inundation mapping. Environmental Modelling & Software, 152, 105398. https://doi.org/10.1016/J.ENVSOFT.2022.105398spa
dc.relation.referencesAvand, M., Moradi, H., & lasboyee, M. R. (2021a). Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability. Journal of Hydrology, 595, 125663. https://doi.org/10.1016/J.JHYDROL.2020.125663spa
dc.relation.referencesAvand, M., Moradi, H., & lasboyee, M. R. (2021b). Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan watershed, Iran. Advances in Space Research, 67(10), 3169–3186. https://doi.org/10.1016/J.ASR.2021.02.011spa
dc.relation.referencesBerghuijs, W. R., Woods, R. A., Hutton, C. J., & Sivapalan, M. (2016). Dominant flood generating mechanisms across the United States. Geophysical Research Letters, 43(9), 4382–4390. https://doi.org/10.1002/2016GL068070spa
dc.relation.referencesBhatt, S., & Ahmed, S. A. (2014). Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International, 29(8), 878–894. https://doi.org/10.1080/10106049.2013.868042spa
dc.relation.referencesBhuiyan, S. R., & Baky, A. al. (2014). Digital elevation based flood hazard and vulnerability study at various return periods in Sirajganj Sadar Upazila, Bangladesh. International Journal of Disaster Risk Reduction, 10, 48–58. https://doi.org/10.1016/J.IJDRR.2014.06.001spa
dc.relation.referencesBin, A., & Ali, M. D. (n.d.). Flood Inundation Modeling and Hazard Mapping under Uncertainty in the Sungai Johor Basin, Malaysia.spa
dc.relation.referencesContreras, J. L., & Contreras, Y. K. (2021). Determinación De Zonas Susceptibles A Inundación En El Municipio De Villapinzón – Cundinamarca, Mediante El Uso Del Sistema De Información Geográfica (SIG). http://www.cundinamarca.gov.co:10039/wcm/connect/9e96b703-852d-470f-9b64-3c8e601b3805/3.+Anexo+3.3+-spa
dc.relation.referencesCostache, R., Pham, Q. B., Sharifi, E., Linh, N. T. T., Abba, S. I., Vojtek, M., Vojteková, J., Nhi, P. T. T., & Khoi, D. N. (2020). Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sensing, 12(1). https://doi.org/10.3390/rs12010106spa
dc.relation.referencesDarabi, H., Choubin, B., Rahmati, O., Torabi Haghighi, A., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology, 569, 142–154. https://doi.org/10.1016/J.JHYDROL.2018.12.002spa
dc.relation.referencesEingrüber, N., & Korres, W. (2022). Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Science of The Total Environment, 838, 155775. https://doi.org/10.1016/J.SCITOTENV.2022.155775spa
dc.relation.referencesErnesto Hernández-Uribe, R., Barrios-Piña, H., Ramírez, A. I., & para correspondencia Resumen Hernández-Uribe, A. (2017). Análisis de riesgo por inundación: metodología y aplicación a la cuenca Atemajac. http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/1316spa
dc.relation.referencesGhosh, S., Saha, S., & Bera, B. (2022). Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan foreland basin. Natural Hazards Research. https://doi.org/10.1016/J.NHRES.2022.06.003spa
dc.relation.referencesGonzález-Arqueros, M. L., Mendoza, M. E., Bocco, G., & Solís Castillo, B. (2018). Flood susceptibility in rural settlements in remote zones: The case of a mountainous basin in the Sierra-Costa region of Michoacán, Mexico. Journal of Environmental Management, 223, 685–693. https://doi.org/10.1016/J.JENVMAN.2018.06.075spa
dc.relation.referencesHaile, A. T., Tefera, F. T., & Rientjes, T. (2016). Flood forecasting in Niger-Benue basin using satellite and quantitative precipitation forecast data. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 52, 475–484. https://doi.org/10.1016/j.jag.2016.06.021spa
dc.relation.referencesHosseini, F. S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., & Haghighi, A. T. (2020). Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of The Total Environment, 711, 135161. https://doi.org/10.1016/J.SCITOTENV.2019.135161spa
dc.relation.referencesJafarzadegan, K., Alipour, A., Gavahi, K., Moftakhari, H., & Moradkhani, H. (2021). Toward improved river boundary conditioning for simulation of extreme floods. Advances in Water Resources, 158, 104059. https://doi.org/10.1016/J.ADVWATRES.2021.104059spa
dc.relation.referencesLi, X., Rankin, C., Gangrade, S., Zhao, G., Lander, K., Voisin, N., Shao, M., Morales-Hernández, M., Kao, S. C., & Gao, H. (2021). Evaluating precipitation, streamflow, and inundation forecasting skills during extreme weather events: A case study for an urban watershed. Journal of Hydrology, 603, 127126. https://doi.org/10.1016/J.JHYDROL.2021.127126spa
dc.relation.referencesLin, J. M., & Billa, L. (2021). Spatial prediction of flood-prone areas using geographically weighted regression. Environmental Advances, 6, 100118. https://doi.org/10.1016/J.ENVADV.2021.100118spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2017). Decreto 2245 de 2017, Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible, en lo relacionado con el acotamiento de rondas hídricas. https://www.icbf.gov.co/cargues/avance/docs/decreto_2245_2017.htmspa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2018a). Guía técnica de criterios para el acotamiento de las rondas hídricas en Colombia. http://www.mdba.gov.au/.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2018b). Res. 957 de 2018. http://www.andi.com.co/Uploads/Res.%20957%20de%202018.pdfspa
dc.relation.referencesMontané, A., Buffin-Bélanger, T., Vinet, F., & Vento, O. (2017). Mappings extreme floods with numerical floodplain models (NFM) in France. Applied Geography, 80, 15–22. https://doi.org/10.1016/J.APGEOG.2017.01.002spa
dc.relation.referencesMoreno, J. M., Sánchez, J. M., & Espitia, H. E. (2020). Use of computational intelligence techniques to predict flooding in places adjacent to the Magdalena River. Heliyon, 6(9), e04872. https://doi.org/10.1016/J.HELIYON.2020.E04872spa
dc.relation.referencesMosquera-Machado, S., & Ahmad, S. (2007). Flood hazard assessment of Atrato River in Colombia. Water Resources Management, 21(3), 591–609. https://doi.org/10.1007/s11269-006-9032-4spa
dc.relation.referencesNkeki, F. N., Bello, E. I., & Agbaje, I. G. (2022). Flood risk mapping and urban infrastructural susceptibility assessment using a GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria. International Journal of Disaster Risk Reduction, 77, 103097. https://doi.org/10.1016/J.IJDRR.2022.103097spa
dc.relation.referencesQuirogaa, V. M., Kurea, S., Udoa, K., & Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25–33. https://doi.org/10.1016/j.riba.2015.12.001spa
dc.relation.referencesRodríguez, E. (2016). Diseño metodológico para la evaluación del riesgo por inundación a nivel local con información escasa.spa
dc.relation.referencesSamela, C., Albano, R., Sole, A., & Manfreda, S. (2018). A GIS tool for cost-effective delineation of flood-prone areas. Computers, Environment and Urban Systems, 70, 43–52. https://doi.org/10.1016/J.COMPENVURBSYS.2018.01.013spa
dc.relation.referencesSamela, C., Troy, T. J., & Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Advances in Water Resources, 102, 13–28. https://doi.org/10.1016/J.ADVWATRES.2017.01.007spa
dc.relation.referencesSemaw, F., Zeleke, G., & Balew, A. (2022). Evaluating flood risk management practices and vulnerability mapping in Alawuha watershed (North Wollo Zone, Ethiopia) using GIS and remote sensing. Applied Geomatics, 14(2), 347–367. https://doi.org/10.1007/s12518-022-00429-zspa
dc.relation.referencesWang, P., Li, Y., Yu, P., & Zhang, Y. (2021). The analysis of urban flood risk propagation based on the modified susceptible infected recovered model. Journal of Hydrology, 603, 127121. https://doi.org/10.1016/J.JHYDROL.2021.127121spa
dc.relation.referencesWerner, M., Loaiza, J. C., Rosero Mesa, M. C., Faneca Sànchez, M., de Keizer, O., & Sandoval, M. C. (2016). Developing Flood Forecasting Capabilities in Colombia (South America). Flood Forecasting: A Global Perspective, 349–368. https://doi.org/10.1016/B978-0-12-801884-2.00012-8spa
dc.relation.referencesWijayarathne, D. B., & Coulibaly, P. (2020). Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. Journal of Hydrology: Regional Studies, 27, 100646. https://doi.org/10.1016/J.EJRH.2019.100646spa
dc.relation.referencesYin, J., Yu, D., Yin, Z., Wang, J., & Xu, S. (2013). Multiple scenario analyses of Huangpu River flooding using a 1D/2D coupled flood inundation model. Natural Hazards, 66(2), 577–589. https://doi.org/10.1007/s11069-012-0501-1spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordNumerical modelsspa
dc.subject.keywordFlood zonesspa
dc.subject.keywordHydrodynamic modelsspa
dc.subject.keywordSpatial statisticsspa
dc.subject.keywordMorphometric analysisspa
dc.subject.keywordHydrological modelsspa
dc.subject.keywordWatershedspa
dc.subject.lembIngeniería Ambientalspa
dc.subject.lembIngenieríaspa
dc.subject.lembBiología de agua dulcespa
dc.subject.proposalRonda hídricaspa
dc.subject.proposalModelos hidrológicosspa
dc.subject.proposalAnálisis morfométricospa
dc.subject.proposalEstadística espacialspa
dc.subject.proposalModelos hidrodinámicosspa
dc.subject.proposalZonas de inundaciónspa
dc.subject.proposalModelos numéricosspa
dc.titleEstado del arte sobre metodologías el acotamiento de rondas hídricas.spa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2022jessicaalejandratorresalbarracin.pdf
Tamaño:
172.1 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
Carta_aprobacion_facultad_2021 - TORRES ALBARRACIN JESSICA ALEJANDRA - GRADO INDIVIDUAL.pdf
Tamaño:
863.88 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad
Thumbnail USTA
Nombre:
Carta_autorizacion_autoarchivo_autor_2021-páginas-eliminadas-firmado.pdf
Tamaño:
928.61 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta derechos de autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: