Are average years of education losing predictive power for economic growth? An alternative measure through structural equations modeling

dc.contributor.authorLaverde-Rojas, Henry.spa
dc.contributor.authorCorrea, Juan C.spa
dc.contributor.authorJaffe, Klaus.spa
dc.contributor.authorCaicedo, Mario I.spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000426016spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=_Tui-1kAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.co.ve/citations?user=ybqui-EAAAAJ&hl=enspa
dc.contributor.orcidhttps://orcid.org/0000-0002-6112-5259spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-05-20T15:23:52Zspa
dc.date.available2020-05-20T15:23:52Zspa
dc.date.issued2020-05-19spa
dc.description.abstractThe accumulation of knowledge required to produce economic value is a process that often relates to nations economic growth. Some decades ago many authors, in the absence of other available indicators, used to rely on certain measures of human capital such as years of schooling, enrollment rates, or literacy. In this paper, we show that the predictive power of years of education as a proxy for human capital started to dwindle in 1990 when the schooling of nations began to be homogenized. We developed a structural equation model that estimates a metric of human capital that is less sensitive than average years of education and remains as a significant predictor of economic growth when tested with both cross-section data and panel data.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationLaverde-Rojas, H., Correa, J. C., Jaffe, K., & Caicedo, M. I. (2019). Are average years of education losing predictive power for economic growth? An alternative measure through structural equations modeling. PloS one, 14(3), e0213651. https://doi.org/10.1371/journal.pone.0213651spa
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0213651spa
dc.identifier.urihttp://hdl.handle.net/11634/23337
dc.relation.referencesTeixeira AA, Queiro´s AS. Economic growth, human capital and structural change: A dynamic panel data analysis. Research policy. 2016; 45(8):1636–1648. https://doi.org/10.1016/j.respol.2016.04.006spa
dc.relation.referencesČadil J, Petkovova´ L, Blatna´ D. Human capital, economic structure and growth. Procedia Economics and Finance. 2014; 12:85–92. https://doi.org/10.1016/S2212-5671(14)00323-2spa
dc.relation.referencesSchultz TW. Investment in human capital. The American economic review. 1961; 51(1):1–17.spa
dc.relation.referencesBecker GS. Investment in human capital: A theoretical analysis. Journal of political economy. 1962; 70 (5, Part 2):9–49. https://doi.org/10.1086/258724spa
dc.relation.referencesBreton TR. The quality vs. the quantity of schooling: What drives economic growth? Economics of Education Review. 2011; 30(4):765–773. https://doi.org/10.1016/j.econedurev.2011.01.005spa
dc.relation.referencesHanushek EA, Woessmann L. Do better schools lead to more growth? Cognitive skills, economic outcomes, and causation. Journal of economic growth. 2012; 17(4):267–321. https://doi.org/10.1007/ s10887-012-9081-xspa
dc.relation.references. Wo¨ßmann L. Specifying human capital. Journal of economic surveys. 2003; 17(3):239–270. https://doi. org/10.1111/1467-6419.00195spa
dc.relation.referencesFolloni G, Vittadini G. Human capital measurement: a survey. Journal of economic surveys. 2010; 24 (2):248–279. https://doi.org/10.1111/j.1467-6419.2009.00614.xspa
dc.relation.referencesCastello´-Climent A, Hidalgo-Cabrillana A. The role of educational quality and quantity in the process of economic development. Economics of Education Review. 2012; 31(4):391–409. https://doi.org/10. 1016/j.econedurev.2011.11.004spa
dc.relation.referencesBloom DF, Canning D. Population health and economic growth. In: Spence M, Lewis M, editors. Health and Growth, Commission on Growth and Development. Washington: The World Bank; 2008.spa
dc.relation.referencesGoldin C. Human capital. In: Diebolt C, Haupert M, editors. Handbook of Cliometrics. La Crosse, WI, USA: Springer; 2016. p. 55–86.spa
dc.relation.referencesMessinis G, Ahmed AD. Cognitive skills, innovation and technology diffusion. Economic modelling. 2013; 30:565–578. https://doi.org/10.1016/j.econmod.2012.10.002spa
dc.relation.referencesBollen KA. Structural Equations with Latent Variables. Wiley series in probability and mathematical statistics. Applied probability and statistics section. Wiley; 1989.spa
dc.relation.referencesBollen KA. Latent variables in psychology and the social sciences. Annual review of psychology. 2002; 53(1):605–634. https://doi.org/10.1146/annurev.psych.53.100901.135239 PMID: 11752498spa
dc.relation.referencesBun MJ, Harrison TD. OLS and IV estimation of regression models including endogenous interaction terms. Econometric Reviews. 2018; p. 1–14. https://doi.org/10.1080/07474938.2018.1427486spa
dc.relation.references. Ahsan H, Haque ME. Threshold effects of human capital: Schooling and economic growth. Economics Letters. 2017; 156:48–52. https://doi.org/10.1016/j.econlet.2017.04.014spa
dc.relation.referencesLohmo¨ller JB. Latent variable path modeling with partial least squares. Berlin: Springer-Verlag; 2013.spa
dc.relation.referencesCassel C, Hackl P, Westlund AH. Robustness of partial least-squares method for estimating latent variable quality structures. Journal of applied statistics. 1999; 26(4):435–446. https://doi.org/10.1080/ 02664769922322spa
dc.relation.referencesVinzi VE, Trinchera L, Amato S. PLS Path Modeling: From Foundations to Recent Developments and Open Issues for Model Assessment and Improvement. In: Vinzi VE, Chin WW, Henseler J, Wang H, editors. Handbook of Partial Least Squares: Concepts, Methods and Applications. Berlin, Heidelberg: Springer; 2010. p. 47–82.spa
dc.relation.referencesChristiaensen L, Martin W. Agriculture, structural transformation and poverty reduction–Eight new insights; 2018.spa
dc.relation.referencesAndersson M, Till ER. Between the Engine and the Fifth Wheel: An Analytical Survey of the Shifting Roles of Agriculture in Development Theory. In: Agricultural Development in the World Periphery. Springer; 2018. p. 29–61.spa
dc.relation.referencesGuo R, Yi J, Zhang J. Family size, birth order, and tests of the quantity–quality model. Journal of Comparative Economics. 2017; 45(2):219–224. https://doi.org/10.1016/j.jce.2016.09.006spa
dc.relation.referencesKlemp M, Weisdorf J. Fecundity, fertility and the formation of human capital. The Economic Journal. 2016spa
dc.relation.referencesSubramanian S, De Neve JW. Social determinants of health and the International Monetary Fund. Proceedings of the National Academy of Sciences. 2017; 114(25):6421–6423. https://doi.org/10.1073/ pnas.1706988114spa
dc.relation.referencesDurlauf SN, Johnson PA, Temple JR. Growth econometrics. Handbook of economic growth. 2005; 1:555–677. https://doi.org/10.1016/S1574-0684(05)01008-7spa
dc.relation.referencesMurray MP. Avoiding invalid instruments and coping with weak instruments. Journal of economic Perspectives. 2006; 20(4):111–132. https://doi.org/10.1257/jep.20.4.111spa
dc.relation.referencesArellano M, Bover O. Another look at the instrumental variable estimation of error-components models. Journal of econometrics. 1995; 68(1):29–51. https://doi.org/10.1016/0304-4076(94)01642-Dspa
dc.relation.referencesBlundell R, Bond S. Initial conditions and moment restrictions in dynamic panel data models. Journal of econometrics. 1998; 87(1):115–143. https://doi.org/10.1016/S0304-4076(98)00009-8spa
dc.relation.referencesLewbel A. Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics. 2012; 30(1):67–80. https://doi.org/10.1080/ 07350015.2012.643126spa
dc.relation.referencesBaum CF, Schaffer ME. IVREG2H: Stata module to perform instrumental variables estimation using heteroskedasticity-based instruments; 2012. Statistical Software Components, Boston College Department of Economics.spa
dc.relation.referencesArellano M, Bond S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The review of economic studies. 1991; 58(2):277–297. https://doi.org/10. 2307/2297968spa
dc.relation.referencesAlonso-Borrego C, Arellano M. Symmetrically normalized instrumental-variable estimation using panel data. Journal of Business & Economic Statistics. 1999; 17(1):36–49. https://doi.org/10.1080/07350015. 1999.10524795spa
dc.relation.referencesBond S, Hoeffler A, Temple J. GMM Estimation of Empirical Growth Models. Economics Group, Nuffield College, University of Oxford; 2001. 2001-W21. Available from: https://ideas.repec.org/p/nuf/econwp/ 0121.html.spa
dc.relation.referencesRoodman D. A note on the theme of too many instruments. Oxford Bulletin of Economics and statistics. 2009; 71(1):135–158. https://doi.org/10.1111/j.1468-0084.2008.00542.xspa
dc.relation.referencesLederman D, Lesniak JT, Feenstra RC, Inklaar R, Timmer MP. “The Next Generation of the Penn World Table.; 2017spa
dc.relation.referencesBarro RJ, Lee JW. A new data set of educational attainment in the world, 1950–2010. Journal of development economics. 2013; 104:184–198. https://doi.org/10.1016/j.jdeveco.2012.10.001spa
dc.relation.referencesMankiw NG, Romer D, Weil DN. A contribution to the empirics of economic growth. The quarterly journal of economics. 1992; 107(2):407–437. https://doi.org/10.2307/2118477spa
dc.relation.referencesTeorell J, Charron N, Dahlberg S, Holmberg S, Rothstein B, Sundin P, et al. The quality of government dataset, version 20Dec13. University of Gothenburg: The Quality of Government Institute; 2013.spa
dc.relation.referencesStock JH, Wright JH, Yogo M. A survey of weak instruments and weak identification in generalized method of moments. Journal of Business & Economic Statistics. 2002; 20(4):518–529. https://doi.org/ 10.1198/073500102288618658spa
dc.relation.referencesKleibergen F, Paap R. Generalized reduced rank tests using the singular value decomposition. Journal of econometrics. 2006; 133(1):97–126. https://doi.org/10.1016/j.jeconom.2005.02.011spa
dc.relation.referencesWindmeijer F. A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of econometrics. 2005; 126(1):25–51. https://doi.org/10.1016/j.jeconom.2004.02.005spa
dc.relation.referencesAltinok N, Murseli H. International database on human capital quality. Economics Letters. 2007; 96 (2):237–244. https://doi.org/10.1016/j.econlet.2007.01.009spa
dc.relation.referencesJaffe K, Caicedo M, Manzanares M, Gil M, Rios A, Florez A, et al. Productivity in physical and chemical science predicts the future economic growth of developing countries better than other popular indices. PloS One. 2013; 8(6):e66239. https://doi.org/10.1371/journal.pone.0066239 PMID: 23776640spa
dc.relation.referencesCorrea JC, Jaffe K. Corruption and Wealth: Unveiling a national prosperity syndrome in Europe. Journal of Economic Development Studies. 2015; 3(3):43–59.spa
dc.relation.references. Paulus M, Kristoufek L. Worldwide clustering of the corruption perception. Physica A: Statistical Mechanics and its Applications. 2015; 428:351–358. https://doi.org/10.1016/j.physa.2015.01.065spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordHuman capitalspa
dc.subject.keywordEducationspa
dc.subject.keywordEconomic growthspa
dc.subject.proposalEducaciónspa
dc.subject.proposalCrecimiento económicospa
dc.subject.proposalCapital humanospa
dc.titleAre average years of education losing predictive power for economic growth? An alternative measure through structural equations modelingspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
713.pdf
Tamaño:
1.51 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: