Avances en Sistemas Acuapónicos a Pequeña Escala: Un Estudio de Implementación y Evaluación en el Campus Limonal

dc.contributor.advisorContreras Gómez, Alix Yusara
dc.contributor.authorDueñas García, Stiven Camilo
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2023-09-27T15:19:46Z
dc.date.available2023-09-27T15:19:46Z
dc.date.issued2023-09-26
dc.descriptionLa acuaponía replica el ciclo natural de mineralización para purificar cuerpos de agua a nivel global y mantener el equilibrio ecológico. Su objetivo es reducir insumos, minimizar la contaminación y mejorar la calidad de vida al maximizar la producción. Este estudio se centra en tres fases: un análisis global de prototipos acuapónicos, la evaluación del Sistema de Acuaponía Modular (SAM) en Limonal y las mejoras implementadas en el prototipo, incluyendo la adición de la alimentación semiautomática y ajustes hidropónicos e hidráulicos. Estas optimizaciones han aumentado significativamente la eficiencia y el rendimiento, impulsando avances notables en el sistema acuapónico y resaltando la evolución funcional del SAM en Limonal.spa
dc.description.abstractAquaponics replicates the natural mineralization cycle to purify bodies of water on a global scale and maintain ecological balance. Its goal is to reduce inputs, minimize pollution, and enhance the quality of life by maximizing production. This study focuses on three phases: a global analysis of aquaponic prototypes, the evaluation of the Modular Aquaponics System (MAS) in Limonal, and the improvements implemented in the prototype, including the addition of semi-automatic feeding and hydroponic and hydraulic adjustments. These optimizations have significantly increased efficiency and performance, driving notable advancements in the aquaponic system and highlighting the functional evolution of MAS in Limonal.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationDueñas García, S. C. (2023). Avances en Sistemas Acuapónicos a Pequeña Escala: Un Estudio de Implementación y Evaluación en el Campus Limonal. [Trabajo de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/52417
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.relation.referencesAbbasi, R., Martinez, P., & Ahmad, R. (2021). An ontology model to represent aquaponics 4.0 system’s knowledge. Information Processing in Agriculture. https://doi.org/10.1016/J.INPA.2021.12.001spa
dc.relation.referencesAbdul Aziz, N. I. H., Hanafiah, M. M., & Mohamed Ali, M. Y. (2019). Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income. Renewable Energy, 132, 363–369. https://doi.org/10.1016/J.RENENE.2018.07.149spa
dc.relation.referencesAgudelo, C., & Wayra, A. (2021). Propuesta de un sistema de acuaponía para promover la agricultura sostenible y mejorar la economía del municipio de Tibacuy, caso de estudio finca Los Naranjos. https://repositorio.unbosque.edu.co/handle/20.500.12495/7085spa
dc.relation.referencesBaganz, G. F. M., Junge, R., Portella, M. C., Goddek, S., Keesman, K. J., Baganz, D., Staaks, G., Shaw, C., Lohrberg, F., & Kloas, W. (2022). The aquaponic principle—It is all about coupling. Reviews in Aquaculture, 14(1), 252–264. https://doi.org/10.1111/RAQ.12596spa
dc.relation.referencesBarbosa, P. T. L., Povh, J. A., Farias, K. N. N., da Silva, T. V., Teodoro, G. C., Ribeiro, J. S., Stringhetta, G. R., dos Santos Fernandes, C. E., & Filho, R. A. C. C. (2022). Nile tilapia production in polyculture with freshwater shrimp using an aquaponic system and biofloc technology. Aquaculture, 551, 737916. https://doi.org/10.1016/J.AQUACULTURE.2022.737916spa
dc.relation.referencesBeveridge, M. C. M., Thilsted, S. H., Phillips, M. J., Metian, M., Troell, M., & Hall, S. J. (2013). Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculturea. Journal of Fish Biology, 83(4), 1067–1084. https://doi.org/10.1111/JFB.12187spa
dc.relation.referencesCerozi, B. S., & Fitzsimmons, K. (2017). Phosphorus dynamics modeling and mass balance in an aquaponics system. Agricultural Systems, 153, 94–100. https://doi.org/10.1016/J.AGSY.2017.01.020spa
dc.relation.referencesChoudhury, A., Lepine, C., Witarsa, F., & Good, C. (2022). Anaerobic digestion challenges and resource recovery opportunities from land-based aquaculture waste and seafood processing byproducts: A review. Bioresource Technology, 354, 127144. https://doi.org/10.1016/J.BIORTECH.2022.127144spa
dc.relation.referencesColt, J., M. Schuur, A., Weaver, D., & Semmens, K. (2021). Engineering Design of Aquaponics Systems. Reviews in Fisheries Science & Aquaculture, 1–95 | 10.1080/23308249.2021.1886240. Engineering Design of Aquaponics Systems, Reviews in Fisheries Science & Aquaculture. https://doi.org/https://doi.org/10.1080/23308249.2021.1886240spa
dc.relation.referencesColt, J., & Schuur, A. M. (2021). Comparison of nutrient costs from fish feeds and inorganic fertilizers for aquaponics systems. Aquacultural Engineering, 95, 102205. https://doi.org/10.1016/J.AQUAENG.2021.102205spa
dc.relation.referencesDECRETO 2256 DE 1991. (n.d.). Retrieved March 20, 2023, from https://www.suin-juriscol.gov.co/viewDocument.asp?id=1426392spa
dc.relation.referencesDelaide, B., Delhaye, G., Dermience, M., Gott, J., Soyeurt, H., & Jijakli, M. H. (2017). Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system. Aquacultural Engineering, 78, 130–139. https://doi.org/10.1016/J.AQUAENG.2017.06.002spa
dc.relation.referencesDelaide, B., Goddek, S., Gott, J., Soyeurt, H., & Jijakli, M. H. (2016). Lettuce (Lactuca sativa L. var. Sucrine) Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics. Water 2016, Vol. 8, Page 467, 8(10), 467. https://doi.org/10.3390/W8100467spa
dc.relation.referencesDelaide, B., Monsees, H., Gross, A., Goddek, S., Monsees, H., Gross, A., & Goddek, S. (2019). Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation. Aquaponics Food Production Systems, 247–266. https://doi.org/10.1007/978-3-030-15943-6_10spa
dc.relation.referencesEl-Sayed, A.-F. M. (2020a). Environmental requirements. Tilapia Culture, 47–67. https://doi.org/10.1016/B978-0-12-816509-6.00004-5spa
dc.relation.referencesEl-Sayed, A.-F. M. (2020b). Taxonomy and basic biology. Tilapia Culture, 21–31. https://doi.org/10.1016/B978-0-12-816509-6.00002-1spa
dc.relation.referencesEspinal, C. A., & Matulić, D. (2019a). Recirculating Aquaculture Technologies. Aquaponics Food Production Systems, 35–76. https://doi.org/10.1007/978-3-030-15943-6_3spa
dc.relation.referencesFAO. (2022). AGROVOC. https://www.fao.org/agrovoc/es/searchspa
dc.relation.referencesFAO. (2023). Fisheries and Aquaculture - National Aquaculture Legislation Overview - Colombia. Murekezi, P.. División de Pesca y Acuicultura. https://www.fao.org/fishery/es/legalframework/co/en?lang=enspa
dc.relation.referencesFAO, FIDA, OPS, PMA, & UNICEF. (2023). Panorama regional de la seguridad alimentaria y nutricional - América Latina y el Caribe 2022: hacia una mejor asequibilidad de las dietas saludables. In Panorama regional de la seguridad alimentaria y nutricional - América Latina y el Caribe 2022. FAO; IFAD; PAHO; WFP; UNICEF; https://doi.org/10.4060/CC3859ESspa
dc.relation.referencesFelipe, L., & Zambrano, H. (2017). Diseño, construcción y evaluación de un sistema acuapónico automatizado de tipo tradicional y doble recirculación en el cultivo de Tilapia Roja (Oreochromis Mossambicus) y Lechuga Crespa (Lactuca Sativa). https://repositorio.unal.edu.co/handle/unal/62954spa
dc.relation.referencesFernández-Cabanás, V. M., Delgado, A., Lobillo-Eguíbar, J. R., & Pérez-Urrestarazu, L. (2022). Early production of strawberry in aquaponic systems using commercial hydroponic bands. Aquacultural Engineering, 97, 102242. https://doi.org/10.1016/J.AQUAENG.2022.102242spa
dc.relation.referencesForchino, A. A., Lourguioui, H., Brigolin, D., & Pastres, R. (2017). Aquaponics and sustainability: The comparison of two different aquaponic techniques using the Life Cycle Assessment (LCA). Aquacultural Engineering, 77, 80–88. https://doi.org/10.1016/J.AQUAENG.2017.03.002spa
dc.relation.referencesGalván, L., & Ríos, L. (2013). Procesos, bacterias y arqueobacterias involucrados en el ciclo biológico del nitrógeno para la eliminación de compuestos nitrogenados en ecosistemas de agua dulce, una revisión sistemática. http://www.udea.edu.co/hmspa
dc.relation.referencesGoddek, S., Delaide, B. P. L., Joyce, A., Wuertz, S., Jijakli, M. H., Gross, A., Eding, E. H., Bläser, I., Reuter, M., Keizer, L. C. P., Morgenstern, R., Körner, O., Verreth, J., & Keesman, K. J. (2018). Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquacultural Engineering, 83, 10–19. https://doi.org/10.1016/J.AQUAENG.2018.07.003spa
dc.relation.referencesGoddek, S., Espinal, C. A., Delaide, B., Jijakli, M. H., Schmautz, Z., Wuertz, S., & Keesman, K. J. (2016). Navigating towards Decoupled Aquaponic Systems: A System Dynamics Design Approach. Water 2016, Vol. 8, Page 303, 8(7), 303. https://doi.org/10.3390/W8070303spa
dc.relation.referencesGoddek, S., Joyce, A., Wuertz, S., Körner, O., Bläser, I., Reuter, M., Keesman, K. J., Goddek, S., Keesman, K. J., Joyce, A., Wuertz, S., Körner, O., Bläser, I., & Reuter, · M. (2019). Decoupled Aquaponics Systems. Aquaponics Food Production Systems, 201–229. https://doi.org/10.1007/978-3-030-15943-6_8spa
dc.relation.referencesGoddek, S., & Vermeulen, T. (2018). Comparison of Lactuca sativa growth performance in conventional and RAS-based hydroponic systems. Aquaculture International, 26(6), 1377–1386. https://doi.org/10.1007/S10499-018-0293-8/FIGURES/6spa
dc.relation.referencesGutierrez-Wing, M. T., & Malone, R. F. (2006). Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquacultural Engineering, 34(3), 163–171. https://doi.org/10.1016/J.AQUAENG.2005.08.003spa
dc.relation.referencesHager, J., Bright, L. A., Tidwell, J. H., & Dusci, J. (2021a). A Practical Handbook for Growers AQUAPONICS Production Manual (Kentucky State University, Ed.). https://www.researchgate.net/publication/355972997_A_Practical_Handbook_for_Growers_AQUAPONICS_Production_Manual/citationsspa
dc.relation.referencesHamid, S. H. A., Lananan, F., Noor, N. A. M., & Endut, A. (2022). Physical filtration of nutrients utilizing gravel-based and lightweight expanded clay aggregate (LECA) as growing media in aquaponic recirculation system (ARS). Aquacultural Engineering, 98, 102261. https://doi.org/10.1016/J.AQUAENG.2022.102261spa
dc.relation.referencesJhariya, M. K., Banerjee, A., & Meena, R. S. (2022). Importance of natural resources conservation: Moving toward the sustainable world. Natural Resources Conservation and Advances for Sustainability, 3–27. https://doi.org/10.1016/B978-0-12-822976-7.00027-2spa
dc.relation.referencesKamareddine, L. A., & Maraqa, M. A. (2021). Lifecycle assessment of aquaponics. Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering, 1083–1108. https://doi.org/10.1016/B978-0-12-809582-9.00022-0spa
dc.relation.referencesKeesman, K. J., Körner, O., Wagner, K., Urban, J., Karimanzira, D., Rauschenbach, T., Goddek, S., Keesman, K. J., Goddek, · S, Körner, O., Wagner, K., Karimanzira, D., & Rauschenbach, · T. (2019). Aquaponics Systems Modelling. Aquaponics Food Production Systems, 267–299. https://doi.org/10.1007/978-3-030-15943-6_11spa
dc.relation.referencesKelly, N., Vaštakaitė-Kairienė, V., & Runkle, E. S. (2022). Indoor lighting effects on plant nutritional compounds. Plant Factory Basics, Applications and Advances, 329–349. https://doi.org/10.1016/B978-0-323-85152-7.00013-6spa
dc.relation.referencesKralik, B., Weisstein, F., Meyer, J., Neves, K., Anderson, D., & Kershaw, J. (2022). From water to table: A multidisciplinary approach comparing fish from aquaponics with traditional production methods. Aquaculture, 552, 737953. https://doi.org/10.1016/J.AQUACULTURE.2022.737953spa
dc.relation.referencesKrishnani, K. K., Kumar, N., Meena, K. K., & Singh, N. P. (2018). Bioremediation of perturbed waterbodies fed with wastewater for enhancing finfish and shellfish production. Wastewater Management Through Aquaculture, 185–206. https://doi.org/10.1007/978-981-10-7248-2_9/COVERspa
dc.relation.referencesLaura, B. B., Casabianca, ;, Montaño, L. ;, Julián, S., Pantoja, ;, Stefanía, V., Daniel, R. C., Salcedo, ;, & Cristian, R. (2015). Diseño y construcción de un prototipo de sistema acuapónico para el aprovechamiento y tratamiento de desechos de piscicultura de la Hacienda La Cosmopolitana, Restrepo – Meta. Revista de Tecnología, ISSN 1692-1399, Vol. 14, No. 2, 2015 (Ejemplar Dedicado a: Energías Renovables), Págs. 97-104, 14(2), 97–104. https://dialnet.unirioja.es/servlet/articulo?codigo=6041482&info=resumen&idioma=SPAspa
dc.relation.referencesLembo, G., & Mente, E. (2019). Impacts and Future Developments ORGANIC AQUACULTURE. In Organic Aquaculture. Springer International Publishing. https://doi.org/10.1007/978-3-030-05603-2spa
dc.relation.referencesLennard, W. A. (2021). A comparison of buffering species and regimes applied within a research-scale, recirculating aquaponics system. Aquaculture and Fisheries, 6(5), 495–505. https://doi.org/10.1016/J.AAF.2020.07.001spa
dc.relation.referencesLennard, W. A., & Leonard, B. V. (2006). A Comparison of Three Different Hydroponic Sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic Test System. Aquaculture International 2006 14:6, 14(6), 539–550. https://doi.org/10.1007/S10499-006-9053-2spa
dc.relation.referencesLennard, W., Goddek, S., Lennard, W., & Goddek, S. (2019). Aquaponics: The Basics. Aquaponics Food Production Systems, 113–143. https://doi.org/10.1007/978-3-030-15943-6_5spa
dc.relation.referencesLey 13 de 1990 - Gestor Normativo - Función Pública. (n.d.). Retrieved March 20, 2023, from https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=66783spa
dc.relation.referencesLu, C., & Grundy, S. (2017). Urban Agriculture and Vertical Farming. In Encyclopedia of Sustainable Technologies (pp. 393–402). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10184-8spa
dc.relation.referencesMasabni, J., & Niu, G. (2022). Aquaponics. Plant Factory Basics, Applications and Advances, 167–180. https://doi.org/10.1016/B978-0-323-85152-7.00017-3spa
dc.relation.referencesMohapatra, B. C., Chandan, N. K., Panda, S. K., Majhi, D., & Pillai, B. R. (2020). Design and development of a portable and streamlined nutrient film technique (NFT) aquaponic system. Aquacultural Engineering, 90, 102100. https://doi.org/10.1016/J.AQUAENG.2020.102100spa
dc.relation.referencesMonsees, H., Keitel, J., Paul, M., Kloas, W., & Wuertz, S. (2017). Potential of aquacultural sludge treatment for aquaponics: evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquaculture Environment Interactions, 9(1), 9–18. https://doi.org/10.3354/AEI00205spa
dc.relation.referencesNaciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. www.cepal.org/es/suscripcionesspa
dc.relation.referencesPalm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Haїssam Jijakli, M., & Kotzen, B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International, 26(3), 813–842. https://doi.org/10.1007/S10499-018-0249-Z/METRICSspa
dc.relation.referencesPalm, H. W., Knaus, U., Appelbaum, S., Strauch, S. M., Kotzen, B., Palm, H. W., Knaus, · U, Strauch, S. M., Appelbaum, S., & Kotzen, B. (2019). Coupled Aquaponics Systems. Aquaponics Food Production Systems, 163–199. https://doi.org/10.1007/978-3-030-15943-6_7spa
dc.relation.referencesPérez-Urrestarazu, L., Lobillo-Eguíbar, J., Fernández-Cañero, R., & Fernández-Cabanás, V. M. (2019). Suitability and optimization of FAO’s small-scale aquaponics systems for joint production of lettuce (Lactuca sativa) and fish (Carassius auratus). Aquacultural Engineering, 85, 129–137. https://doi.org/10.1016/J.AQUAENG.2019.04.001spa
dc.relation.referencesPinho, S. M., Lima, J. P., David, L. H., Oliveira, M. S., Goddek, S., Carneiro, D. J., Keesman, K. J., & Portella, M. C. (2021). Decoupled FLOCponics systems as an alternative approach to reduce the protein level of tilapia juveniles’ diet in integrated agri-aquaculture production. Aquaculture, 543, 736932. https://doi.org/10.1016/J.AQUACULTURE.2021.736932spa
dc.relation.referencesRico, R., Reyes, J., & Reyes Suarez, I. (2019). Diseño automatico para sistema sostenible para acuaponia. https://repository.usta.edu.co/handle/11634/17861?show=fullspa
dc.relation.referencesRojas, M. (2022). Diseño, desarrollo y evaluación de un sistema de Permacuaponia para el cultivo de tilapia roja (Oreochromis Mossambicus) y hortalizas nanas, en modelos de producción familiar. https://repository.usta.edu.co/handle/11634/42819spa
dc.relation.referencesSabwa, J. A., Manyala, J. O., Masese, F. O., Fitzsimmons, K., Achieng, A. O., & Munguti, J. M. (2022). Effects of stocking density on the performance of lettuce ( Lactuca sativa ) in small‐scale lettuce‐Nile tilapia ( Oreochromis niloticus L.) aquaponic system . Aquaculture, Fish and Fisheries, 2(6), 458–469. https://doi.org/10.1002/AFF2.71spa
dc.relation.referencesShete, A. P., Verma, A. K., Chadha, N. K., Prakash, C., Peter, R. M., Ahmad, I., & Nuwansi, K. K. T. (2016). Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyprinus carpio) and Mint (Mentha arvensis). Aquacultural Engineering, 72–73, 53–57. https://doi.org/10.1016/J.AQUAENG.2016.04.004spa
dc.relation.referencesSiringi, J. O., Turoop, L., & Njonge, F. (2021). Growth and biochemical response of Nile tilapia (Oreochromis niloticus) to spirulina (Arthrospira platensis) enhanced aquaponic system. Aquaculture, 544, 737134. https://doi.org/10.1016/J.AQUACULTURE.2021.737134spa
dc.relation.referencesSomerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2022). Producción de alimentos en acuaponía a pequeña escala – Cultivo integral de peces y plantas. Producción de Alimentos En Acuaponía a Pequeña Escala – Cultivo Integral de Peces y Plantas. FAO Documento Técnico de Pesca y Acuicultura No. 589. FAO, Roma. https://doi.org/10.4060/I4021ESspa
dc.relation.referencesStouvenakers, G., Massart, S., Depireux, P., & Haïssam Jijakli, M. (2020). Microbial Origin of Aquaponic Water Suppressiveness against Pythium aphanidermatum Lettuce Root Rot Disease. Microorganisms 2020, Vol. 8, Page 1683, 8(11), 1683. https://doi.org/10.3390/MICROORGANISMS8111683spa
dc.relation.referencesSuárez-Cáceres, G. P., Lobillo-Eguíbar, J., Fernández-Cabanás, V. M., Quevedo-Ruiz, F. J., & Pérez-Urrestarazu, L. (2021). Polyculture production of vegetables and red hybrid tilapia for self-consumption by means of micro-scale aquaponic systems. Aquacultural Engineering, 95, 102181. https://doi.org/10.1016/J.AQUAENG.2021.102181spa
dc.relation.referencesSuhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344. https://doi.org/10.1016/J.AGWAT.2016.10.013spa
dc.relation.referencesSuhl, J., Oppedijk, B., Baganz, D., Kloas, W., Schmidt, U., & van Duijn, B. (2019). Oxygen consumption in recirculating nutrient film technique in aquaponics. Scientia Horticulturae, 255, 281–291. https://doi.org/10.1016/J.SCIENTA.2019.05.033spa
dc.relation.referencesTaha, M. F., ElManawy, A. I., Alshallash, K. S., ElMasry, G., Alharbi, K., Zhou, L., Liang, N., & Qiu, Z. (2022). Using Machine Learning for Nutrient Content Detection of Aquaponics-Grown Plants Based on Spectral Data. Sustainability 2022, Vol. 14, Page 12318, 14(19), 12318. https://doi.org/10.3390/SU141912318spa
dc.relation.referencesWongkiew, S., Hu, Z., Nhan, H. T., & Khanal, S. K. (2020). Aquaponics for resource recovery and organic food productions. Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy, 475–494. https://doi.org/10.1016/B978-0-444-64309-4.00020-9spa
dc.relation.referencesYang, T., & Kim, H. J. (2019). Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Scientia Horticulturae, 256, 108619. https://doi.org/10.1016/J.SCIENTA.2019.108619spa
dc.relation.referencesYep, B., & Zheng, Y. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228, 1586–1599. https://doi.org/10.1016/J.JCLEPRO.2019.04.290spa
dc.relation.referencesYogev, U., Barnes, A., & Gross, A. (2016). Nutrients and Energy Balance Analysis for a Conceptual Model of a Three Loops off Grid, Aquaponics. Water 2016, Vol. 8, Page 589, 8(12), 589. https://doi.org/10.3390/W8120589spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordAquaponicsspa
dc.subject.keywordMineralizationspa
dc.subject.keywordPollutionspa
dc.subject.keywordEfficiencyspa
dc.subject.keywordOptimizationspa
dc.subject.lembPrototipos acuapónicosspa
dc.subject.lembCultivos hidropónicosspa
dc.subject.lembCalidad del aguaspa
dc.subject.lembProducción de alimentos saludablesspa
dc.subject.proposalAcuaponíaspa
dc.subject.proposalMineralizaciónspa
dc.subject.proposalContaminaciónspa
dc.subject.proposalEficienciaspa
dc.subject.proposalOptimizaciónspa
dc.titleAvances en Sistemas Acuapónicos a Pequeña Escala: Un Estudio de Implementación y Evaluación en el Campus Limonalspa
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 4 de 4
Thumbnail USTA
Nombre:
2023DueñasStiven.pdf
Tamaño:
4.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2023DueñasStiven1.pdf
Tamaño:
153.61 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación Facultad
Thumbnail USTA
Nombre:
2023DueñasStiven2.pdf
Tamaño:
180.33 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de publicación
Thumbnail USTA
Nombre:
2023DueñasStiven3.rar
Tamaño:
4.61 MB
Formato:
Descripción:
Apéndices

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: