Avances en Sistemas Acuapónicos a Pequeña Escala: Un Estudio de Implementación y Evaluación en el Campus Limonal
dc.contributor.advisor | Contreras Gómez, Alix Yusara | |
dc.contributor.author | Dueñas García, Stiven Camilo | |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2023-09-27T15:19:46Z | |
dc.date.available | 2023-09-27T15:19:46Z | |
dc.date.issued | 2023-09-26 | |
dc.description | La acuaponía replica el ciclo natural de mineralización para purificar cuerpos de agua a nivel global y mantener el equilibrio ecológico. Su objetivo es reducir insumos, minimizar la contaminación y mejorar la calidad de vida al maximizar la producción. Este estudio se centra en tres fases: un análisis global de prototipos acuapónicos, la evaluación del Sistema de Acuaponía Modular (SAM) en Limonal y las mejoras implementadas en el prototipo, incluyendo la adición de la alimentación semiautomática y ajustes hidropónicos e hidráulicos. Estas optimizaciones han aumentado significativamente la eficiencia y el rendimiento, impulsando avances notables en el sistema acuapónico y resaltando la evolución funcional del SAM en Limonal. | spa |
dc.description.abstract | Aquaponics replicates the natural mineralization cycle to purify bodies of water on a global scale and maintain ecological balance. Its goal is to reduce inputs, minimize pollution, and enhance the quality of life by maximizing production. This study focuses on three phases: a global analysis of aquaponic prototypes, the evaluation of the Modular Aquaponics System (MAS) in Limonal, and the improvements implemented in the prototype, including the addition of semi-automatic feeding and hydroponic and hydraulic adjustments. These optimizations have significantly increased efficiency and performance, driving notable advancements in the aquaponic system and highlighting the functional evolution of MAS in Limonal. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Ambiental | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Dueñas García, S. C. (2023). Avances en Sistemas Acuapónicos a Pequeña Escala: Un Estudio de Implementación y Evaluación en el Campus Limonal. [Trabajo de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/52417 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Ambiental | spa |
dc.publisher.program | Pregrado de Ingeniería Ambiental | spa |
dc.relation.references | Abbasi, R., Martinez, P., & Ahmad, R. (2021). An ontology model to represent aquaponics 4.0 system’s knowledge. Information Processing in Agriculture. https://doi.org/10.1016/J.INPA.2021.12.001 | spa |
dc.relation.references | Abdul Aziz, N. I. H., Hanafiah, M. M., & Mohamed Ali, M. Y. (2019). Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income. Renewable Energy, 132, 363–369. https://doi.org/10.1016/J.RENENE.2018.07.149 | spa |
dc.relation.references | Agudelo, C., & Wayra, A. (2021). Propuesta de un sistema de acuaponía para promover la agricultura sostenible y mejorar la economía del municipio de Tibacuy, caso de estudio finca Los Naranjos. https://repositorio.unbosque.edu.co/handle/20.500.12495/7085 | spa |
dc.relation.references | Baganz, G. F. M., Junge, R., Portella, M. C., Goddek, S., Keesman, K. J., Baganz, D., Staaks, G., Shaw, C., Lohrberg, F., & Kloas, W. (2022). The aquaponic principle—It is all about coupling. Reviews in Aquaculture, 14(1), 252–264. https://doi.org/10.1111/RAQ.12596 | spa |
dc.relation.references | Barbosa, P. T. L., Povh, J. A., Farias, K. N. N., da Silva, T. V., Teodoro, G. C., Ribeiro, J. S., Stringhetta, G. R., dos Santos Fernandes, C. E., & Filho, R. A. C. C. (2022). Nile tilapia production in polyculture with freshwater shrimp using an aquaponic system and biofloc technology. Aquaculture, 551, 737916. https://doi.org/10.1016/J.AQUACULTURE.2022.737916 | spa |
dc.relation.references | Beveridge, M. C. M., Thilsted, S. H., Phillips, M. J., Metian, M., Troell, M., & Hall, S. J. (2013). Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculturea. Journal of Fish Biology, 83(4), 1067–1084. https://doi.org/10.1111/JFB.12187 | spa |
dc.relation.references | Cerozi, B. S., & Fitzsimmons, K. (2017). Phosphorus dynamics modeling and mass balance in an aquaponics system. Agricultural Systems, 153, 94–100. https://doi.org/10.1016/J.AGSY.2017.01.020 | spa |
dc.relation.references | Choudhury, A., Lepine, C., Witarsa, F., & Good, C. (2022). Anaerobic digestion challenges and resource recovery opportunities from land-based aquaculture waste and seafood processing byproducts: A review. Bioresource Technology, 354, 127144. https://doi.org/10.1016/J.BIORTECH.2022.127144 | spa |
dc.relation.references | Colt, J., M. Schuur, A., Weaver, D., & Semmens, K. (2021). Engineering Design of Aquaponics Systems. Reviews in Fisheries Science & Aquaculture, 1–95 | 10.1080/23308249.2021.1886240. Engineering Design of Aquaponics Systems, Reviews in Fisheries Science & Aquaculture. https://doi.org/https://doi.org/10.1080/23308249.2021.1886240 | spa |
dc.relation.references | Colt, J., & Schuur, A. M. (2021). Comparison of nutrient costs from fish feeds and inorganic fertilizers for aquaponics systems. Aquacultural Engineering, 95, 102205. https://doi.org/10.1016/J.AQUAENG.2021.102205 | spa |
dc.relation.references | DECRETO 2256 DE 1991. (n.d.). Retrieved March 20, 2023, from https://www.suin-juriscol.gov.co/viewDocument.asp?id=1426392 | spa |
dc.relation.references | Delaide, B., Delhaye, G., Dermience, M., Gott, J., Soyeurt, H., & Jijakli, M. H. (2017). Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system. Aquacultural Engineering, 78, 130–139. https://doi.org/10.1016/J.AQUAENG.2017.06.002 | spa |
dc.relation.references | Delaide, B., Goddek, S., Gott, J., Soyeurt, H., & Jijakli, M. H. (2016). Lettuce (Lactuca sativa L. var. Sucrine) Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics. Water 2016, Vol. 8, Page 467, 8(10), 467. https://doi.org/10.3390/W8100467 | spa |
dc.relation.references | Delaide, B., Monsees, H., Gross, A., Goddek, S., Monsees, H., Gross, A., & Goddek, S. (2019). Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation. Aquaponics Food Production Systems, 247–266. https://doi.org/10.1007/978-3-030-15943-6_10 | spa |
dc.relation.references | El-Sayed, A.-F. M. (2020a). Environmental requirements. Tilapia Culture, 47–67. https://doi.org/10.1016/B978-0-12-816509-6.00004-5 | spa |
dc.relation.references | El-Sayed, A.-F. M. (2020b). Taxonomy and basic biology. Tilapia Culture, 21–31. https://doi.org/10.1016/B978-0-12-816509-6.00002-1 | spa |
dc.relation.references | Espinal, C. A., & Matulić, D. (2019a). Recirculating Aquaculture Technologies. Aquaponics Food Production Systems, 35–76. https://doi.org/10.1007/978-3-030-15943-6_3 | spa |
dc.relation.references | FAO. (2022). AGROVOC. https://www.fao.org/agrovoc/es/search | spa |
dc.relation.references | FAO. (2023). Fisheries and Aquaculture - National Aquaculture Legislation Overview - Colombia. Murekezi, P.. División de Pesca y Acuicultura. https://www.fao.org/fishery/es/legalframework/co/en?lang=en | spa |
dc.relation.references | FAO, FIDA, OPS, PMA, & UNICEF. (2023). Panorama regional de la seguridad alimentaria y nutricional - América Latina y el Caribe 2022: hacia una mejor asequibilidad de las dietas saludables. In Panorama regional de la seguridad alimentaria y nutricional - América Latina y el Caribe 2022. FAO; IFAD; PAHO; WFP; UNICEF; https://doi.org/10.4060/CC3859ES | spa |
dc.relation.references | Felipe, L., & Zambrano, H. (2017). Diseño, construcción y evaluación de un sistema acuapónico automatizado de tipo tradicional y doble recirculación en el cultivo de Tilapia Roja (Oreochromis Mossambicus) y Lechuga Crespa (Lactuca Sativa). https://repositorio.unal.edu.co/handle/unal/62954 | spa |
dc.relation.references | Fernández-Cabanás, V. M., Delgado, A., Lobillo-Eguíbar, J. R., & Pérez-Urrestarazu, L. (2022). Early production of strawberry in aquaponic systems using commercial hydroponic bands. Aquacultural Engineering, 97, 102242. https://doi.org/10.1016/J.AQUAENG.2022.102242 | spa |
dc.relation.references | Forchino, A. A., Lourguioui, H., Brigolin, D., & Pastres, R. (2017). Aquaponics and sustainability: The comparison of two different aquaponic techniques using the Life Cycle Assessment (LCA). Aquacultural Engineering, 77, 80–88. https://doi.org/10.1016/J.AQUAENG.2017.03.002 | spa |
dc.relation.references | Galván, L., & Ríos, L. (2013). Procesos, bacterias y arqueobacterias involucrados en el ciclo biológico del nitrógeno para la eliminación de compuestos nitrogenados en ecosistemas de agua dulce, una revisión sistemática. http://www.udea.edu.co/hm | spa |
dc.relation.references | Goddek, S., Delaide, B. P. L., Joyce, A., Wuertz, S., Jijakli, M. H., Gross, A., Eding, E. H., Bläser, I., Reuter, M., Keizer, L. C. P., Morgenstern, R., Körner, O., Verreth, J., & Keesman, K. J. (2018). Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquacultural Engineering, 83, 10–19. https://doi.org/10.1016/J.AQUAENG.2018.07.003 | spa |
dc.relation.references | Goddek, S., Espinal, C. A., Delaide, B., Jijakli, M. H., Schmautz, Z., Wuertz, S., & Keesman, K. J. (2016). Navigating towards Decoupled Aquaponic Systems: A System Dynamics Design Approach. Water 2016, Vol. 8, Page 303, 8(7), 303. https://doi.org/10.3390/W8070303 | spa |
dc.relation.references | Goddek, S., Joyce, A., Wuertz, S., Körner, O., Bläser, I., Reuter, M., Keesman, K. J., Goddek, S., Keesman, K. J., Joyce, A., Wuertz, S., Körner, O., Bläser, I., & Reuter, · M. (2019). Decoupled Aquaponics Systems. Aquaponics Food Production Systems, 201–229. https://doi.org/10.1007/978-3-030-15943-6_8 | spa |
dc.relation.references | Goddek, S., & Vermeulen, T. (2018). Comparison of Lactuca sativa growth performance in conventional and RAS-based hydroponic systems. Aquaculture International, 26(6), 1377–1386. https://doi.org/10.1007/S10499-018-0293-8/FIGURES/6 | spa |
dc.relation.references | Gutierrez-Wing, M. T., & Malone, R. F. (2006). Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquacultural Engineering, 34(3), 163–171. https://doi.org/10.1016/J.AQUAENG.2005.08.003 | spa |
dc.relation.references | Hager, J., Bright, L. A., Tidwell, J. H., & Dusci, J. (2021a). A Practical Handbook for Growers AQUAPONICS Production Manual (Kentucky State University, Ed.). https://www.researchgate.net/publication/355972997_A_Practical_Handbook_for_Growers_AQUAPONICS_Production_Manual/citations | spa |
dc.relation.references | Hamid, S. H. A., Lananan, F., Noor, N. A. M., & Endut, A. (2022). Physical filtration of nutrients utilizing gravel-based and lightweight expanded clay aggregate (LECA) as growing media in aquaponic recirculation system (ARS). Aquacultural Engineering, 98, 102261. https://doi.org/10.1016/J.AQUAENG.2022.102261 | spa |
dc.relation.references | Jhariya, M. K., Banerjee, A., & Meena, R. S. (2022). Importance of natural resources conservation: Moving toward the sustainable world. Natural Resources Conservation and Advances for Sustainability, 3–27. https://doi.org/10.1016/B978-0-12-822976-7.00027-2 | spa |
dc.relation.references | Kamareddine, L. A., & Maraqa, M. A. (2021). Lifecycle assessment of aquaponics. Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering, 1083–1108. https://doi.org/10.1016/B978-0-12-809582-9.00022-0 | spa |
dc.relation.references | Keesman, K. J., Körner, O., Wagner, K., Urban, J., Karimanzira, D., Rauschenbach, T., Goddek, S., Keesman, K. J., Goddek, · S, Körner, O., Wagner, K., Karimanzira, D., & Rauschenbach, · T. (2019). Aquaponics Systems Modelling. Aquaponics Food Production Systems, 267–299. https://doi.org/10.1007/978-3-030-15943-6_11 | spa |
dc.relation.references | Kelly, N., Vaštakaitė-Kairienė, V., & Runkle, E. S. (2022). Indoor lighting effects on plant nutritional compounds. Plant Factory Basics, Applications and Advances, 329–349. https://doi.org/10.1016/B978-0-323-85152-7.00013-6 | spa |
dc.relation.references | Kralik, B., Weisstein, F., Meyer, J., Neves, K., Anderson, D., & Kershaw, J. (2022). From water to table: A multidisciplinary approach comparing fish from aquaponics with traditional production methods. Aquaculture, 552, 737953. https://doi.org/10.1016/J.AQUACULTURE.2022.737953 | spa |
dc.relation.references | Krishnani, K. K., Kumar, N., Meena, K. K., & Singh, N. P. (2018). Bioremediation of perturbed waterbodies fed with wastewater for enhancing finfish and shellfish production. Wastewater Management Through Aquaculture, 185–206. https://doi.org/10.1007/978-981-10-7248-2_9/COVER | spa |
dc.relation.references | Laura, B. B., Casabianca, ;, Montaño, L. ;, Julián, S., Pantoja, ;, Stefanía, V., Daniel, R. C., Salcedo, ;, & Cristian, R. (2015). Diseño y construcción de un prototipo de sistema acuapónico para el aprovechamiento y tratamiento de desechos de piscicultura de la Hacienda La Cosmopolitana, Restrepo – Meta. Revista de Tecnología, ISSN 1692-1399, Vol. 14, No. 2, 2015 (Ejemplar Dedicado a: Energías Renovables), Págs. 97-104, 14(2), 97–104. https://dialnet.unirioja.es/servlet/articulo?codigo=6041482&info=resumen&idioma=SPA | spa |
dc.relation.references | Lembo, G., & Mente, E. (2019). Impacts and Future Developments ORGANIC AQUACULTURE. In Organic Aquaculture. Springer International Publishing. https://doi.org/10.1007/978-3-030-05603-2 | spa |
dc.relation.references | Lennard, W. A. (2021). A comparison of buffering species and regimes applied within a research-scale, recirculating aquaponics system. Aquaculture and Fisheries, 6(5), 495–505. https://doi.org/10.1016/J.AAF.2020.07.001 | spa |
dc.relation.references | Lennard, W. A., & Leonard, B. V. (2006). A Comparison of Three Different Hydroponic Sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic Test System. Aquaculture International 2006 14:6, 14(6), 539–550. https://doi.org/10.1007/S10499-006-9053-2 | spa |
dc.relation.references | Lennard, W., Goddek, S., Lennard, W., & Goddek, S. (2019). Aquaponics: The Basics. Aquaponics Food Production Systems, 113–143. https://doi.org/10.1007/978-3-030-15943-6_5 | spa |
dc.relation.references | Ley 13 de 1990 - Gestor Normativo - Función Pública. (n.d.). Retrieved March 20, 2023, from https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=66783 | spa |
dc.relation.references | Lu, C., & Grundy, S. (2017). Urban Agriculture and Vertical Farming. In Encyclopedia of Sustainable Technologies (pp. 393–402). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10184-8 | spa |
dc.relation.references | Masabni, J., & Niu, G. (2022). Aquaponics. Plant Factory Basics, Applications and Advances, 167–180. https://doi.org/10.1016/B978-0-323-85152-7.00017-3 | spa |
dc.relation.references | Mohapatra, B. C., Chandan, N. K., Panda, S. K., Majhi, D., & Pillai, B. R. (2020). Design and development of a portable and streamlined nutrient film technique (NFT) aquaponic system. Aquacultural Engineering, 90, 102100. https://doi.org/10.1016/J.AQUAENG.2020.102100 | spa |
dc.relation.references | Monsees, H., Keitel, J., Paul, M., Kloas, W., & Wuertz, S. (2017). Potential of aquacultural sludge treatment for aquaponics: evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquaculture Environment Interactions, 9(1), 9–18. https://doi.org/10.3354/AEI00205 | spa |
dc.relation.references | Naciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. www.cepal.org/es/suscripciones | spa |
dc.relation.references | Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Haїssam Jijakli, M., & Kotzen, B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International, 26(3), 813–842. https://doi.org/10.1007/S10499-018-0249-Z/METRICS | spa |
dc.relation.references | Palm, H. W., Knaus, U., Appelbaum, S., Strauch, S. M., Kotzen, B., Palm, H. W., Knaus, · U, Strauch, S. M., Appelbaum, S., & Kotzen, B. (2019). Coupled Aquaponics Systems. Aquaponics Food Production Systems, 163–199. https://doi.org/10.1007/978-3-030-15943-6_7 | spa |
dc.relation.references | Pérez-Urrestarazu, L., Lobillo-Eguíbar, J., Fernández-Cañero, R., & Fernández-Cabanás, V. M. (2019). Suitability and optimization of FAO’s small-scale aquaponics systems for joint production of lettuce (Lactuca sativa) and fish (Carassius auratus). Aquacultural Engineering, 85, 129–137. https://doi.org/10.1016/J.AQUAENG.2019.04.001 | spa |
dc.relation.references | Pinho, S. M., Lima, J. P., David, L. H., Oliveira, M. S., Goddek, S., Carneiro, D. J., Keesman, K. J., & Portella, M. C. (2021). Decoupled FLOCponics systems as an alternative approach to reduce the protein level of tilapia juveniles’ diet in integrated agri-aquaculture production. Aquaculture, 543, 736932. https://doi.org/10.1016/J.AQUACULTURE.2021.736932 | spa |
dc.relation.references | Rico, R., Reyes, J., & Reyes Suarez, I. (2019). Diseño automatico para sistema sostenible para acuaponia. https://repository.usta.edu.co/handle/11634/17861?show=full | spa |
dc.relation.references | Rojas, M. (2022). Diseño, desarrollo y evaluación de un sistema de Permacuaponia para el cultivo de tilapia roja (Oreochromis Mossambicus) y hortalizas nanas, en modelos de producción familiar. https://repository.usta.edu.co/handle/11634/42819 | spa |
dc.relation.references | Sabwa, J. A., Manyala, J. O., Masese, F. O., Fitzsimmons, K., Achieng, A. O., & Munguti, J. M. (2022). Effects of stocking density on the performance of lettuce ( Lactuca sativa ) in small‐scale lettuce‐Nile tilapia ( Oreochromis niloticus L.) aquaponic system . Aquaculture, Fish and Fisheries, 2(6), 458–469. https://doi.org/10.1002/AFF2.71 | spa |
dc.relation.references | Shete, A. P., Verma, A. K., Chadha, N. K., Prakash, C., Peter, R. M., Ahmad, I., & Nuwansi, K. K. T. (2016). Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyprinus carpio) and Mint (Mentha arvensis). Aquacultural Engineering, 72–73, 53–57. https://doi.org/10.1016/J.AQUAENG.2016.04.004 | spa |
dc.relation.references | Siringi, J. O., Turoop, L., & Njonge, F. (2021). Growth and biochemical response of Nile tilapia (Oreochromis niloticus) to spirulina (Arthrospira platensis) enhanced aquaponic system. Aquaculture, 544, 737134. https://doi.org/10.1016/J.AQUACULTURE.2021.737134 | spa |
dc.relation.references | Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2022). Producción de alimentos en acuaponía a pequeña escala – Cultivo integral de peces y plantas. Producción de Alimentos En Acuaponía a Pequeña Escala – Cultivo Integral de Peces y Plantas. FAO Documento Técnico de Pesca y Acuicultura No. 589. FAO, Roma. https://doi.org/10.4060/I4021ES | spa |
dc.relation.references | Stouvenakers, G., Massart, S., Depireux, P., & Haïssam Jijakli, M. (2020). Microbial Origin of Aquaponic Water Suppressiveness against Pythium aphanidermatum Lettuce Root Rot Disease. Microorganisms 2020, Vol. 8, Page 1683, 8(11), 1683. https://doi.org/10.3390/MICROORGANISMS8111683 | spa |
dc.relation.references | Suárez-Cáceres, G. P., Lobillo-Eguíbar, J., Fernández-Cabanás, V. M., Quevedo-Ruiz, F. J., & Pérez-Urrestarazu, L. (2021). Polyculture production of vegetables and red hybrid tilapia for self-consumption by means of micro-scale aquaponic systems. Aquacultural Engineering, 95, 102181. https://doi.org/10.1016/J.AQUAENG.2021.102181 | spa |
dc.relation.references | Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344. https://doi.org/10.1016/J.AGWAT.2016.10.013 | spa |
dc.relation.references | Suhl, J., Oppedijk, B., Baganz, D., Kloas, W., Schmidt, U., & van Duijn, B. (2019). Oxygen consumption in recirculating nutrient film technique in aquaponics. Scientia Horticulturae, 255, 281–291. https://doi.org/10.1016/J.SCIENTA.2019.05.033 | spa |
dc.relation.references | Taha, M. F., ElManawy, A. I., Alshallash, K. S., ElMasry, G., Alharbi, K., Zhou, L., Liang, N., & Qiu, Z. (2022). Using Machine Learning for Nutrient Content Detection of Aquaponics-Grown Plants Based on Spectral Data. Sustainability 2022, Vol. 14, Page 12318, 14(19), 12318. https://doi.org/10.3390/SU141912318 | spa |
dc.relation.references | Wongkiew, S., Hu, Z., Nhan, H. T., & Khanal, S. K. (2020). Aquaponics for resource recovery and organic food productions. Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy, 475–494. https://doi.org/10.1016/B978-0-444-64309-4.00020-9 | spa |
dc.relation.references | Yang, T., & Kim, H. J. (2019). Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Scientia Horticulturae, 256, 108619. https://doi.org/10.1016/J.SCIENTA.2019.108619 | spa |
dc.relation.references | Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228, 1586–1599. https://doi.org/10.1016/J.JCLEPRO.2019.04.290 | spa |
dc.relation.references | Yogev, U., Barnes, A., & Gross, A. (2016). Nutrients and Energy Balance Analysis for a Conceptual Model of a Three Loops off Grid, Aquaponics. Water 2016, Vol. 8, Page 589, 8(12), 589. https://doi.org/10.3390/W8120589 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.subject.keyword | Aquaponics | spa |
dc.subject.keyword | Mineralization | spa |
dc.subject.keyword | Pollution | spa |
dc.subject.keyword | Efficiency | spa |
dc.subject.keyword | Optimization | spa |
dc.subject.lemb | Prototipos acuapónicos | spa |
dc.subject.lemb | Cultivos hidropónicos | spa |
dc.subject.lemb | Calidad del agua | spa |
dc.subject.lemb | Producción de alimentos saludables | spa |
dc.subject.proposal | Acuaponía | spa |
dc.subject.proposal | Mineralización | spa |
dc.subject.proposal | Contaminación | spa |
dc.subject.proposal | Eficiencia | spa |
dc.subject.proposal | Optimización | spa |
dc.title | Avances en Sistemas Acuapónicos a Pequeña Escala: Un Estudio de Implementación y Evaluación en el Campus Limonal | spa |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Trabajo de Grado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 4 de 4

- Nombre:
- 2023DueñasStiven.pdf
- Tamaño:
- 4.08 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2023DueñasStiven1.pdf
- Tamaño:
- 153.61 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Aprobación Facultad

- Nombre:
- 2023DueñasStiven2.pdf
- Tamaño:
- 180.33 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Acuerdo de publicación
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: