A consensus protocol under directed communications with two time delays and delay scheduling
Cargando...
Fecha
2013-09-13
Autores
Director
Enlace al recurso
ORCID
Google Scholar
Cvlac
gruplac
Descripción Dominio:
Título de la revista
ISSN de la revista
Título del volumen
Editor
Compartir
Documentos PDF
Cargando...
Resumen
Abstract
This paper studies a consensus protocol over a group of agents driven by second-order dynamics. The communication among
members of the group is assumed to be directed and affected by two rationally independent time delays, one in the position
and the other in the velocity information channels. These delays are unknown but considered to be constant and uniform
throughout the system. The stability of the consensus protocol is studied using a simplifying factorisation procedure and
deploying the cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the exact
stability boundaries in the domain of the delays. The CTCR requires the knowledge of the potential stability switching loci
exhaustively within this domain. The creation of these loci is an important contribution of this work. It is done in a new
surrogate coordinate system, called the spectral delay space. The relative stability of the system, that is, the speed to reach
consensus is also investigated for this class of systems. Based on the outcome of this effort, a paradoxical control design
concept is introduced. It is called the delay scheduling, which is another key contribution of this paper. It reveals that the
performance of the system may be improved by increasing the delays. The amount of increase, however, is only revealed by
the CTCR. Example case studies are presented to verify the underlying analytical derivations.
Idioma
Palabras clave
Citación
Colecciones
Licencia Creative Commons
Atribución-NoComercial-CompartirIgual 2.5 Colombia