Materiales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisión

dc.contributor.advisorOrjuela, David
dc.contributor.advisorSolano, Karina
dc.contributor.advisorGomez, Zully
dc.contributor.authorRios Rojas, Deyner Sahamir
dc.contributor.authorOrtega Diaz, Mayerly
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2021-04-27T17:24:51Z
dc.date.available2021-04-27T17:24:51Z
dc.date.issued2021-04-27
dc.descriptionEl presente estudio proporciona una revisión bibliográfica acerca de materiales compuestos fabricados a partir de polímeros reciclados y fibras naturales, con el fin de identificar algunas de las mezclas existentes y la influencia de variables como la carga de fibra, el pretratamiento, uso de agentes de acople y tamaño de fibra en las propiedades mecánicas resultantes de los compuestos. Se identificó que la proporción de fibra más adecuada para que las propiedades mecánicas mejoren varía de 15% a 40% en peso; además, que pretratamientos como el NaOH y agentes de acople derivados del anhídrido maleico mejoran la unión interfacial entre la matriz y la fibra resultando en mejores propiedades mecánicas. Así mismo, se evidenció que propiedades como la resistencia a la tracción, módulo de tracción, resistencia a la flexión, módulo de flexión y resiliencia al impacto mejoraron con la adición de fibra hasta 40% en peso, mientras que la resistencia al impacto, tensión por deformación a la rotura y elongación siguieron la tendencia de no mejorar ante la adición de fibras. Así pues, tras realizar la comparación de las propiedades mecánicas de diferentes mezclas de materiales compuestos; se identificó que variables como el pretratamiento, el uso de agentes de acople, el tamaño de fibra y las proporciones de matriz-refuerzo tienen una gran influencia dentro de los materiales compuestos resultantes; y que tan solo con variar ligeramente una de ellas, la interacción interfacial puede cambiar radicalmente.spa
dc.description.abstractThis study provides a bibliographic review about composite materials made from recycled polymers and natural fibers, in order to identify some of the existing mixtures and the influence of variables such as fiber loading, pretreatment, use of coupling agents and fiber size in the resulting mechanical properties of the composites. It was identified that the most suitable fiber proportion so that the mechanical properties improve varies from 15% to 40% by weight; furthermore, that pre-treatments such as NaOH and coupling agents derived from maleic anhydride improve the interfacial bond between the matrix and the fiber, resulting in better mechanical properties. Likewise, it was evidenced that properties such as tensile strength, tensile modulus, flexural strength, flexural modulus and impact resilience improved with the addition of fiber up to 40% by weight, while impact resistance, tension due to deformation at break and elongation followed the trend of not improving with the addition of fibers. In addition, a correlation between fiber sizes and mechanical properties was performed in search of a trend, but since the tests were carried out under different conditions, it was not possible to make an ideal comparison for these combinations.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationOrtega Diaz, M., Rios Rojas, D. S., Gómez Rosales, Z. E., Orjuela Yepes, D., & Solano Meza, J. K. (2021). Materiales compuestos de fibras naturales y polímero reciclados: Mezclas, pretratamientos, agentes de acople y propiedades mecánicas - una revisión.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/33854
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.relation.referencesD. B. Rocha and D. d. S. Rosa, "Coupling effect of starch coated fibers for recycled polymer/wood composites," Composites Part B: Engineering, vol. 172, pp. 1-8, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836818343051. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.05.052spa
dc.relation.referencesM. Tufan et al, "Effects of different filler types on decay resistance and thermal, physical, and mechanical properties of recycled high-density polyethylene composites," Iran Polym J, vol. 25, (7), pp. 615-622, 2016. . DOI: 10.1007/s13726-016-0452-6.spa
dc.relation.referencesM. Poletto, "Maleated soybean oil as coupling agent in recycled polypropylene/wood flour composites: Mechanical, thermal, and morphological properties," Journal of Thermoplastic Composite Materials, vol. 32, (8), pp. 1056-1067, 2019. Available: https://journals.sagepub.com/doi/full/10.1177/0892705718785707. DOI: 10.1177/0892705718785707.spa
dc.relation.referencesJ. Anggono et al, "Deformation and failure of sugarcane bagasse reinforced PP," European Polymer Journal, vol. 112, pp. 153-160, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0014305718320317. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.eurpolymj.2018.12.033.spa
dc.relation.referencesM. F. V. Marques et al, "Thermal and Mechanical Properties of Sustainable Composites Reinforced with Natural Fibers," J Polym Environ, vol. 23, (2), pp. 251-260, 2015. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s10924-014-0687-2. DOI: 10.1007/s10924-014-0687-2.spa
dc.relation.referencesM. K. Lila et al, "A recyclability study of bagasse fiber reinforced polypropylene composites," Polymer Degradation and Stability, vol. 152, pp. 272-279, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391018301484. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2018.05.001.spa
dc.relation.referencesM. Hughes and M. Hughes, "Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites," J Mater Sci, vol. 47, (2), pp. 599-609, 2012. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s10853-011-6025-3. DOI: 10.1007/s10853-011-6025-3.spa
dc.relation.referencesA. Komuraiah, N. S. Kumar and B. D. Prasad, "Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties," Mech Compos Mater, vol. 50, (3), pp. 359-376, 2014. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s11029-014-9422-2. DOI: 10.1007/s11029-014-9422-2.spa
dc.relation.referencesM. Rokbi et al, "Effect of processing parameters on tensile properties of recycled polypropylene based composites reinforced with jute fabrics," International Journal of Lightweight Materials and Manufacture, vol. 3, (2), pp. 144-149, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2588840419301076. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.ijlmm.2019.09.005.spa
dc.relation.referencesA. Lima et al, "Recycled Polyethylene Composites Reinforced with Jute Fabric from Sackcloth: Part I-Preparation and Preliminary Assessment," J Polym Environ, vol. 20, (1), pp. 245-253, 2012. Available: https://search.proquest.com/docview/922370538. DOI: 10.1007/s10924-011-0373-6.spa
dc.relation.referencesP. Naldony, T. H. Flores-Sahagun and K. G. Satyanarayana, "Effect of the type of fiber (coconut, eucalyptus, or pine) and compatibilizer on the properties of extruded composites of recycled high density polyethylene," Journal of Composite Materials, vol. 50, (1), pp. 45-56, 2016. Available: https://journals.sagepub.com/doi/full/10.1177/0021998315570141. DOI: 10.1177/0021998315570141.spa
dc.relation.referencesM. D. Erdman and B. A. Erdman, "Arrowroot (Maranta arundinacea), Food, Feed, Fuel, and Fiber Resource," Economic Botany, vol. 38, (3), pp. 332-341, 1984. Available: https://www.jstor.org/stable/4254646. DOI: 10.1007/BF02859011.spa
dc.relation.referencesR. S. Chen et al, "Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials," Thermochimica Acta, vol. 640, pp. 52-61, 2016. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0040603116302027. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.tca.2016.08.005.spa
dc.relation.referencesM. N. Islam and M. S. Islam, "Characterization of chemically modified sawdust-reinforced recycled polyethylene composites," Journal of Thermoplastic Composite Materials, vol. 28, (8), pp. 1135-1153, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705713503671. DOI: 10.1177/0892705713503671.spa
dc.relation.referencesS. K. Najafi et al, "Water Absorption Behavior of Composites from Sawdust and Recycled Plastics," Journal of Reinforced Plastics and Composites, vol. 26, (3), pp. 341-348, 2007. Available: https://journals.sagepub.com/doi/full/10.1177/0731684407072519. DOI: 10.1177/0731684407072519.spa
dc.relation.referencesN. Hidayah Marzuki et al, "Mechanical properties of kenaf fiber and montmorillonite reinforced recycled polyethylene terephthalate/recycled polypropylene," Materials Today: Proceedings, vol. 5, (10), pp. 21879-21887, 2018. Available: http://dx.doi.org/10.1016/j.matpr.2018.07.046. DOI: 10.1016/j.matpr.2018.07.046.spa
dc.relation.referencesD. D. P. Moreno, D. Hirayama and C. Saron, "Accelerated aging of pine wood waste/recycled LDPE composite," Polymer Degradation and Stability, vol. 149, pp. 39-44, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391018300211. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2018.01.014.spa
dc.relation.referencesB. Koohestani et al, "Comparison of different natural fiber treatments: a literature review," Int. J. Environ. Sci. Technol., vol. 16, (1), pp. 629-642, 2019. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1007/s13762-018-1890-9. DOI: 10.1007/s13762-018-1890-9.spa
dc.relation.referencesK. Zadeh et al, "Effects of date palm leaf fiber on the thermal and tensile properties of recycled ternary polyolefin blend composites," Fibers Polym, vol. 18, (7), pp. 1330-1335, 2017. Available: https://search.proquest.com/docview/1925068279. DOI: 10.1007/s12221-017-1106-9.spa
dc.relation.referencesM. R. Islam, M. D. H. Beg and A. Gupta, "Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites," Journal of Thermoplastic Composite Materials, vol. 27, (7), pp. 909-932, 2014. Available: https://journals.sagepub.com/doi/full/10.1177/0892705712461511. DOI: 10.1177/0892705712461511.spa
dc.relation.referencesC. Wu and C. Wu, "Enhanced Interfacial Adhesion and Characterisation of Recycled Natural Fibre-Filled Biodegradable Green Composites," J Polym Environ, vol. 26, (7), pp. 2676-2685, 2018. Available: https://search.proquest.com/docview/1973290625. DOI: 10.1007/s10924-017-1160-9.spa
dc.relation.referencesI. Ahmad and T. M. Mei, "Mechanical and Morphological Studies of Rubber Wood Sawdust-Filled UPR Composite Based on Recycled PET," Polymer-Plastics Technology & Engineering, vol. 48, (12), pp. 1262-1268, 2009. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=49234996&lang=es&site=ehost-live. DOI: 10.1080/03602550903204105.spa
dc.relation.referencesP. S. Sari et al, "Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding," Composites Part B: Engineering, vol. 177, pp. 107344, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836819309813. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.107344.spa
dc.relation.referencesR. M. de Sá, C. S. de Miranda and N. M. José, "Preparation and Characterization of Nanowhiskers Cellulose from Fiber Arrowroot (Maranta arundinacea)," Materials Research, vol. 18, (2), pp. 225-229, 2015. Available: https://www.openaire.eu/search/publication?articleId=od______3056::b326e7eb240014ea7b17eee1ca7699f7. DOI: 10.1590/1516-1439.366214.spa
dc.relation.referencesJ. A. Foulk et al, "Enzyme-Retted Flax Fiber and Recycled Polyethylene Composites," Journal of Polymers and the Environment, vol. 12, (3), pp. 165-171, 2004. Available: https://link-springer-com.crai-ustadigital.usantotomas.edu.co/article/10.1023/B:JOOE.0000038548.73494.59. DOI: 10.1023/B:JOOE.0000038548.73494.59.spa
dc.relation.referencesY. Martinez Lopez et al, "Production of wood-plastic composites using cedrela odorata sawdust waste and recycled thermoplastics mixture from post-consumer products - A sustainable approach for cleaner production in Cuba," Journal of Cleaner Production, vol. 244, pp. 118723, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0959652619335930. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.jclepro.2019.118723.spa
dc.relation.referencesA. Lima, S. Monteiro and K. Satyanarayana, "Recycled Polyethylene Composites Reinforced with Jute Fabric from Sackcloth: Part II-Impact Strength Evaluation," J Polym Environ, vol. 19, (4), pp. 957-965, 2011. Available: https://search.proquest.com/docview/905879036. DOI: 10.1007/s10924-011-0347-8.spa
dc.relation.referencesM. Cosnita, C. Cazan and A. Duta, "Interfaces and mechanical properties of recycled rubber–polyethylene terephthalate–wood composites," Journal of Composite Materials, vol. 48, (6), pp. 683-694, 2014. Available: https://journals.sagepub.com/doi/full/10.1177/0021998313476561. DOI: 10.1177/0021998313476561.spa
dc.relation.referencesA. C. N. Singleton et al, "On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite," Composites Part B, vol. 34, (6), pp. 519-526, 2003. Available: http://dx.doi.org/10.1016/S1359-8368(03)00042-8. DOI: 10.1016/S1359-8368(03)00042-8.spa
dc.relation.referencesA. Ogah and A. Ogah, "Characterization of Sorghum Bran/Recycled Low Density Polyethylene for the Manufacturing of Polymer Composites," J Polym Environ, vol. 25, (3), pp. 533-543, 2017. Available: https://search.proquest.com/docview/1928618344. DOI: 10.1007/s10924-016-0830-3.spa
dc.relation.referencesJ. R. Araújo, W. R. Waldman and M. A. De Paoli, "Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect," Polymer Degradation and Stability, vol. 93, (10), pp. 1770-1775, 2008. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0141391008002516. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymdegradstab.2008.07.021.spa
dc.relation.referencesD. K. Rajak et al, "Recent progress of reinforcement materials: a comprehensive overview of composite materials," Journal of Materials Research and Technology, vol. 8, (6), pp. 6354-6374, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2238785419312086. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.jmrt.2019.09.068.spa
dc.relation.referencesE. Corradini et al, "Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber," Polymer Testing, vol. 28, (2), pp. 183-187, 2009. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0142941808001943. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymertesting.2008.11.014.spa
dc.relation.referencesM. J. P. Macedo et al, "Composites from recycled polyethylene and plasma treated kapok fibers," Cellulose, vol. 27, (4), pp. 2115-2134, 2020. Available: https://search.proquest.com/docview/2364155851. DOI: 10.1007/s10570-019-02946-4.spa
dc.relation.referencesA. Arsad et al, "The influence of kenaf fiber as reinforcement on recycled polypropylene/recycled polyamide-6 composites," Int J Plast Technol, vol. 17, (2), pp. 149-162, 2013. Available: https://search.proquest.com/docview/1512181575. DOI: 10.1007/s12588-013-9055-7.spa
dc.relation.referencesR. H. Cruz-Estrada et al, "Potential use of waste from tree pruning and recovered plastic to obtain a building material: Case study of Merida, Mexico," Waste Management & Research, pp. 734242, 2020. . DOI: 10.1177/0734242X20928404.spa
dc.relation.referencesN. Hidayah Marzuki et al, "Mechanical properties of kenaf fiber and montmorillonite reinforced recycled polyethylene terephthalate/recycled polypropylene," Materials Today: Proceedings, vol. 5, (10), pp. 21879-21887, 2018. Available: http://dx.doi.org/10.1016/j.matpr.2018.07.046. DOI: 10.1016/j.matpr.2018.07.046.spa
dc.relation.referencesM. N. Islam and M. S. Islam, "Characterization of chemically modified sawdust-reinforced recycled polyethylene composites," Journal of Thermoplastic Composite Materials, vol. 28, (8), pp. 1135-1153, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705713503671. DOI: 10.1177/0892705713503671.spa
dc.relation.referencesS. Nayak, G. Dixit and K. Appu Kuttan, "Mechanical properties of eco-friendly recycled polymer composites: a comparative study of theoretical and experimental results," Int J Plast Technol, vol. 17, (1), pp. 75-93, 2013. Available: https://search.proquest.com/docview/1400587951. DOI: 10.1007/s12588-013-9050-z.spa
dc.relation.referencesT. P. Nguyen, C. Sollogoub and A. Guinault, "Relationship between fiber chemical treatment and properties of recycled pp/bamboo fiber composites," Journal of Reinforced Plastics & Composites, vol. 29, (21), pp. 3244-3256, 2010. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=55060828&lang=es&site=ehost-live. DOI: 10.1177/0731684410370905.spa
dc.relation.referencesP. Noorunnisa Khanam and M. A. AlMaadeed, "Improvement of ternary recycled polymer blend reinforced with date palm fibre," Materials & Design, vol. 60, pp. 532-539, 2014. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S026130691400301X. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matdes.2014.04.033.spa
dc.relation.referencesR. S. Chen and S. Ahmad, "Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics," Materials Chemistry and Physics, vol. 198, pp. 57-65, 2017. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0254058417304236. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matchemphys.2017.05.054.spa
dc.relation.referencesY. Lei et al, "Preparation and properties of recycled HDPE/natural fiber composites," Composites Part A: Applied Science and Manufacturing, vol. 38, (7), pp. 1664-1674, 2007. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359835X07000310. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesa.2007.02.001.spa
dc.relation.referencesN. Lu and S. Oza, "A comparative study of the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix," Composites Part B: Engineering, vol. 45, (1), pp. 1651-1656, 2013. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836812006403. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2012.09.076.spa
dc.relation.referencesA. Dehghani et al, "Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites," Materials & Design (1980-2015), vol. 52, pp. 841-848, 2013.spa
dc.relation.referencesM. J. Taufiq, M. R. Mansor and Z. Mustafa, "Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend," Composite Structures, vol. 189, pp. 510-515, 2018. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0263822317327976. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compstruct.2018.01.090.spa
dc.relation.referencesO. A. Saputra et al, "Improvement of Thermo-Mechanical Properties of Short Natural Fiber Reinforced Recycled Polypropylene Composites through Double Step Grafting Process," IOP Conference Series: Earth and Environmental Science, vol. 75, pp. 12023, 2017. . DOI: 10.1088/1755-1315/75/1/012023.spa
dc.relation.referencesM. Z. Abdullah and N. H. Che Aslan, "Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber," Resources, vol. 8, (2), pp. 97, 2019. Available: https://www.openaire.eu/search/publication?articleId=dedup_wf_001::1e774172e17a5e56c03839f109383b12. DOI: 10.3390/resources8020097.spa
dc.relation.referencesA. Gupta et al, "Mechanical and thermal degradation behavior of sisal fiber (SF) reinforced recycled polypropylene (RPP) composites," Fibers Polym, vol. 15, (5), pp. 994-1003, 2014. Available: https://search.proquest.com/docview/1530762892. DOI: 10.1007/s12221-014-0994-1.spa
dc.relation.referencesM. Naushad et al, "Mechanical and damage tolerance behavior of short sisal fiber reinforced recycled polypropylene biocomposites," Journal of Composite Materials, vol. 51, (8), pp. 1087-1097, 2017. Available: https://journals.sagepub.com/doi/full/10.1177/0021998316658945. DOI: 10.1177/0021998316658945.spa
dc.relation.referencesK. Rohit and S. Dixit, "Tensile and Impact Behaviour of Thermoplastic BOPP/Milk Pouches Blends Reinforced with Sisal Fibers," Progress in Rubber Plastics and Recycling Technology, vol. 33, (3), pp. 139-152, 2017. Available: https://journals.sagepub.com/doi/full/10.1177/147776061703300302. DOI: 10.1177/147776061703300302.spa
dc.relation.referencesA. L. Catto et al, "Characterization of polypropylene composites using yerba mate fibers as reinforcing filler," Composites Part B: Engineering, vol. 174, pp. 106935, 2019. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836819309783. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.106935.spa
dc.relation.referencesE. Erbas Kiziltas, A. Kiziltas and E. C. Lee, "Structure and properties of compatibilized recycled polypropylene/recycled polyamide 12 blends with cellulose fibers addition," Polymer Composites, vol. 39, (10), pp. 3556-3563, 2018. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.24376. DOI: 10.1002/pc.24376.spa
dc.relation.referencesK. M. Zadeh, D. Ponnamma and M. Al Ali Al-Maadeed, "Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy," Polymer Testing, vol. 61, pp. 341-348, 2017. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0142941817302210. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.polymertesting.2017.05.006.spa
dc.relation.referencesK. B. Adhikary, S. Pang and M. P. Staiger, "Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE)," Composites Part B: Engineering, vol. 39, (5), pp. 807-815, 2008. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S135983680700145X. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2007.10.005.spa
dc.relation.referencesG. N. Farahani, I. Ahmad and Z. Mosadeghzad, "Effect of Fiber Content, Fiber Length and Alkali Treatment on Properties of Kenaf Fiber/UPR Composites Based on Recycled PET Wastes," Polymer-Plastics Technology & Engineering, vol. 51, (6), pp. 634-639, 2012. Available: https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=74638531&lang=es&site=ehost-live. DOI: 10.1080/03602559.2012.659314.spa
dc.relation.referencesA. A. El-Fattah et al, "The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene," Journal of Composite Materials, vol. 49, (26), pp. 3251-3262, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0021998314561484. DOI: 10.1177/0021998314561484.spa
dc.relation.referencesKhalil, H. P. S. A et al, "Recycle Polypropylene (RPP) - Wood Saw Dust (WSD) Composites - Part 1: The Effect of Different Filler Size and Filler Loading on Mechanical and Water Absorption Properties," Journal of Reinforced Plastics and Composites, vol. 25, (12), pp. 1291-1303, 2006. Available: https://journals.sagepub.com/doi/full/10.1177/0731684406062060. DOI: 10.1177/0731684406062060.spa
dc.relation.referencesA. R. Kakroodi et al, "Mechanical Properties of Recycled Polypropylene/SBR Rubber Crumbs Blends Reinforced by Birch Wood Flour," Polymers and Polymer Composites, vol. 20, (5), pp. 439-444, 2012. Available: https://search.proquest.com/docview/1018695041. DOI: 10.1177/096739111202000503.spa
dc.relation.referencesC. Homkhiew, T. Ratanawilai and W. Thongruang, "Composites from recycled polypropylene and rubberwood flour," Journal of Thermoplastic Composite Materials, vol. 28, (2), pp. 179-194, 2015. Available: https://journals.sagepub.com/doi/full/10.1177/0892705712475019. DOI: 10.1177/0892705712475019.spa
dc.relation.referencesDinesh and S. Palsule, "Structure and properties of recycled bamboo fiber reinforced chemically functionalized ethylene propylene rubber composites," Polymers and Polymer Composites, pp. 96739111989411, 2019. . DOI: 10.1177/0967391119894112.spa
dc.relation.referencesJ. O. Agunsoye and V. S. Aigbodion, "Bagasse filled recycled polyethylene bio-composites: Morphological and mechanical properties study," Results in Physics, vol. 3, pp. 187-194, 2013. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S2211379713000296. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.rinp.2013.09.003.spa
dc.relation.referencesC. Tan, I. Ahmad and M. Heng, "Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers," Materials & Design, vol. 32, (8), pp. 4493-4501, 2011. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S0261306911002007. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.matdes.2011.03.037.spa
dc.relation.referencesT. Zi‐Ni et al, "Characteristics of Metroxylon sagu Resistant Starch Type III as Prebiotic Substance," Journal of Food Science, vol. 80, (4), pp. H875-H882, 2015. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/1750-3841.12817. DOI: 10.1111/1750-3841.12817.spa
dc.relation.referencesK. Das et al, "Development of Recycled Polypropylene Matrix Composites Reinforced with Waste Jute Caddies," Journal of Reinforced Plastics and Composites, vol. 29, (2), pp. 201-208, 2010. Available: https://journals.sagepub.com/doi/full/10.1177/0731684408096929. DOI: 10.1177/0731684408096929.spa
dc.relation.referencesH. Younesi-Kordkheili and A. Pizzi, "Ionic liquid- modified lignin as a bio- coupling agent for natural fiber- recycled polypropylene composites," Composites Part B: Engineering, vol. 181, pp. 107587, 2020. Available: http://www.sciencedirect.com.crai-ustadigital.usantotomas.edu.co/science/article/pii/S1359836818314719. DOI: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1016/j.compositesb.2019.107587.spa
dc.relation.referencesH. Hong et al, "Transform Rice Husk and Recycled Polyethylene into High Performance Composites: Using a Novel Compatibilizer to Infiltratively Enhance the Interfacial Interactions," Progress in Rubber Plastics and Recycling Technology, vol. 32, (4), pp. 253-268, 2016. Available: https://journals.sagepub.com/doi/full/10.1177/147776061603200405. DOI: 10.1177/147776061603200405.spa
dc.relation.referencesK. M. Zadeh, D. Ponnamma and M. Al Ali Al-Maadeed, "Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy," Polymer Testing, vol. 61, pp. 341-348, 2017. Available: http://dx.doi.org/10.1016/j.polymertesting.2017.05.006. DOI: 10.1016/j.polymertesting.2017.05.006.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cb
dc.rights.localAcceso cerradospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordCoupling agentspa
dc.subject.keywordnatural fibersspa
dc.subject.keywordcomposite materialsspa
dc.subject.keywordrecycled polymersspa
dc.subject.keywordpretreatmentspa
dc.subject.proposalAgente de acoplespa
dc.subject.proposalfibras naturalesspa
dc.subject.proposalmateriales compuestosspa
dc.subject.proposalpolímeros recicladosspa
dc.subject.proposalpretratamientospa
dc.titleMateriales compuestos de fibras naturales y polímero reciclados: mezclas, pretratamientos, agentes de acople y propiedades mecánicas - Una revisiónspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2021deynerrios.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
Carta_aprobacion_facultad_autoarchivo - Mayerly Ortega y Sahamir Rios.pdf
Tamaño:
303.11 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad
Thumbnail USTA
Nombre:
Carta_de no _autorizacion_autoarchivo_ Sahamir Rios, Mayerly Ortega.pdf
Tamaño:
113.6 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de NO autorización de publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: