Characterization of postures to analyze people’s emotions using Kinect technology

dc.contributor.authorMonsalve-Pulido, Julián Albertospa
dc.contributor.authorParra-Rodríguez, Carlos Albertospa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-07-05T20:45:33Zspa
dc.date.available2019-07-05T20:45:33Zspa
dc.date.issued2018-04-01spa
dc.descriptionEl presente artículo sintetiza la investigación realizada en el uso de técnicas de clasificación para un proceso de caracterización de posturas de personas que tiene como objetivo la identificación de emociones (Asombro, Enfado, Felicidad y Tristeza). En este proyecto de investigación fue necesario utilizar una metodología de investigación exploratoria en tres fases donde el resultado es una apropiación tecnológica y un modelo de clasificación de emociones en personas en posición de pie, usando el algoritmo de Skeletal Tracking de Kinect basado en software libre. Se propuso un vector de características para el reconocimiento de patrones usando técnicas de clasificación como SVM, KNN y Redes Bayesianas en 17.882 datos obtenidos en una muestra de entrenamiento de 14 personas. Como resultado se evidenció que el algoritmo KNN tiene una efectividad máxima del 89.0466% superando a los demás algoritmos seleccionados.spa
dc.description.abstractThis article synthesizes the research undertaken into the use of classification techniques that characterize people's positions, the objective being to identify emotions (astonishment, anger, happiness and sadness). We used a three-phase exploratory research methodology, which resulted in technological appropriation and a model that classified people’s emotions (in standing position) using the Kinect Skeletal Tracking algorithm, which is a free software. We proposed a feature vector for pattern recognition using classification techniques such as SVM, KNN, and Bayesian Networks for 17,882 pieces of data that were obtained in a 14-person training sample. As a result, we found that that the KNN algorithm has a maximum effectiveness of 89.0466%, which surpasses the other selected algorithms.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMonsalve-Pulido, J. A., & Parra-Rodríguez, C. A. (2018). Characterization of postures to analyze people’s emotions using kinect technology. Bogotá: doi:10.15446/dyna.v85n205.69470spa
dc.identifier.doihttps://doi.org/10.15446/dyna.v85n205.69470spa
dc.identifier.urihttp://hdl.handle.net/11634/17475
dc.relation.referencesMann, S., Intelligent image processing. IEEE, John Wiley & Sons, Inc., 2002. DOI: /10.1002/0471221635spa
dc.relation.referencesValli, A., Natural interaction white paper, 2007.spa
dc.relation.referencesRivera-Mateos, M., El turismo experiencial como forma de turismo responsable e intercultural, en: García-Rodríguez, L., Roldán-Tapía, A.R., Eds., Relac. Intercult. en la Divers., 2013, pp. 199-217.spa
dc.relation.referencesSmith, W.L., Experiential tourism around the world and at home: definitions and standards, Int. J. Serv. Stand., 2(1), 1 P, 2006. DOI: 10.1504/IJSS.2006.008156spa
dc.relation.referencesDale, R., Moisl, H. and Somers, H.L., Handbook of natural language processing, Marcel Dekker, 2000.spa
dc.relation.referencesCambria, E. and Hussain, A., Sentic album: content-, concept-, and context-based online personal photo management system, Cognit. Comput., 4(4), pp. 477-496, 2012. DOI: 10.1007/s12559-012-9145-4chspa
dc.relation.referencesSimon-Kemp, W.A.S., Digital in 2016, 2016.spa
dc.relation.referencesCambria, E., Livingstone, A. and Hussain, A. The Hourglass of Emotions. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R. and, Müller, V.C., (eds.), Cognitive Behavioural Systems. Lecture Notes in Computer Science, vol 7403. Springer, Berlin, Heidelberg. 2012. DOI: 10.1007/978-3-642-34584-5_11spa
dc.relation.referencesMinsky, M., The emotion machine: commonsense thinking, artificial intelligence, and the future of the human mind, 2007.spa
dc.relation.referencesVesterinen, E., Affective computing. Pattern Analysis and Applications, 1(1), pp. 71-73, 1998.spa
dc.relation.referencesSiegman, A.W. and Feldstein, S., Nonverbal behavior and communication. L. Erlbaum, 1987.spa
dc.relation.referencesPons, C., Comunicación no verbal. Barcelona: Editorial Kairós, 2015.spa
dc.relation.referencesKaur, A. and Gupta, V., A survey on sentiment analysis and opinion mining techniques, J. Emerg. Technol. Web Intell., 5(4), pp. 367-371, 2013. DOI: 10.4304/jetwi.5.4.367-3spa
dc.relation.referencesGamon, M., Aue, A., Corston-Oliver, S. and Ringger, E., Pulse: mining customer opinions from free text, Springer, Berlin, Heidelberg, 2005, pp. 121-132. DOI: 10.1007/11552253_12spa
dc.relation.referencesPoria, S., Cambria, E., Hussain, A. and Bin Huang, G., Towards an intelligent framework for multimodal affective data analysis, Neural Networks, 63, pp. 104-116, 2015. DOI: 10.1016/j.neunet.2014.10.005spa
dc.relation.referencesKapoor, A., Burleson, W. and R Picard, W., Automatic prediction of frustration, Int. J. Hum. Comput. Stud., 65(8), pp. 724-736, 2007. DOI: 10.1016/J.IJHCS.2007.02.003spa
dc.relation.referencesLisetti, C.L., Pattern Analysis & Applic, 1, J. Wiley, 1998, 71 P. DOI: 10.1007/BF01238028spa
dc.relation.referencesYan, J., Zheng, W., Xu, Q., Lu, G., Li, H. and Wang, B., Sparse Kernel reduced-rank regression for bimodal emotion recognition from facial expression and speech, IEEE Trans. Multimed., 18(7), pp. 1319-1329, 2016. DOI: 10.1109/TMM.2016.2557721spa
dc.relation.referencesPoria, S., Cambria, E., Howard, N., Bin Huang, G. and Hussain, A., Fusing audio, visual and textual clues for sentiment analysis from multimodal content, Neurocomputing, 174, pp. 50-59, 2016. DOI: 10.1016/j.neucom.2015.01.095spa
dc.relation.referencesBenhumea, H.S., Interfaz de lenguaje natural usando Kinect. Unidad Zacatenco, 2012.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordAnalysis of emotionsspa
dc.subject.keywordRecognition of posturesspa
dc.subject.keywordFree softwarespa
dc.subject.keywordKinectspa
dc.subject.keywordKNNspa
dc.subject.proposalAnálisis de emocionesspa
dc.subject.proposalReconocimiento de posturasspa
dc.subject.proposalSoftware librespa
dc.subject.proposalKinectspa
dc.subject.proposalKNNspa
dc.titleCharacterization of postures to analyze people’s emotions using Kinect technologyspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Characterization of postures to analyze people’s emotions using Kinect technology.pdf
Tamaño:
839.32 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: