Comparación in vitro de la resistencia a la fractura ante fuerzas compresivas, entre una restauración en silicato de litio reforzado con zirconio cementado sobre esmalte y esmalte-dentina en dientes premolares
dc.contributor.advisor | Mesa Gómez, Bernardo Enrique | spa |
dc.contributor.author | Ascanio Roa, Maryali Andreina | spa |
dc.contributor.author | Camargo Matajira, Carlos Alberto | spa |
dc.contributor.author | Maldonado Contreras, Maria Teresa del Pilar | spa |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2020-01-31T19:35:34Z | spa |
dc.date.available | 2020-01-31T19:35:34Z | spa |
dc.date.issued | 2020-01-28 | spa |
dc.description | Introducción: En esta investigación se busca identificar la resistencia a la fractura ante fuerzas compresivas del material silicato de litio reforzado con zirconio cementado sobre solo esmalte y una restauración en silicato de litio reforzado con zirconio cementado sobre esmalte-dentina. Objetivo: Evaluar la resistencia a la fractura ante fuerzas compresivas, entre una restauración de silicato de litio reforzado con zirconio cementado sobre esmalte y esmalte- dentina en dientes premolares. Metodología: Para el estudio se define fractura, como el momento en que el equipo interrumpe la aplicación constante de fuerzas, es el momento en que el cuerpo pierde resistencia. Experimental in vitro, se refiere a una técnica para realizar un determinado experimento en un ambiente controlado fuera de un organismo vivo. Para este caso se realizó un experimento en un órgano de un ser humano. 38 dientes premolares permanentes superiores sanos naturales, se toman 19 dientes para el grupo cementado solo en esmalte y 19 para el grupo cementado en dentina y esmalte; y una muestra de 6 dientes para realizar prueba piloto. Conclusión: Las carillas oclusales cementadas sobre dentina mostraron un menor registro en el tiempo de la fractura, pero no presento estadísticamente diferencias significativas que el cementado sobre esmalte. De acuerdo a la desviación standard no se puede tomar la decisión de cementar las carillas oclusales exclusivamente sobre un tejido evaluados en función de los variables tiempo y desplazamiento. Palabras claves: Comparación in vitro, Dientes premolares, Esmalte-dentina, Fuerzas compresivas, Resistencia, Silicato de litio, Zirconio cementado | spa |
dc.description.abstract | Introduction: This investigation seeks to identify the resistance to fracture against compressive forces of the lithium silicate material reinforced with cemented zirconium on only enamel and a restoration in lithium silicate reinforced with cemented zirconium on enamel-dentine. Objective: To evaluate the resistance to fracture against compressive forces, between a restorations of lithium silicate reinforced with cemented zirconium on enamel and enamel-dentine in premolar teeth. Methodology: Fracture is defined for the study, as the moment when the team interrupts the constant application of forces, is the moment when the body loses resistance. Experimental in vitro, refers to a technique to perform a certain experiment in a controlled environment outside a living organism. For this case an experiment was performed on an organ of a human being. 38 natural healthy upper permanent premolar teeth, 19 teeth are taken for the cemented group only in enamel and 19 for the cemented group in dentin and enamel; and a sample of 6 teeth for pilot testing. Conclusion: The occlusal veneers cemented on dentin showed a lower record at the time of the fracture, but did not show statistically significant differences than the cemented on enamel. According to the standard deviation, the decision cannot be made to cement the occlusal veneers exclusively on a tissue evaluated according to the time and displacement variables. Keywords: In vitro comparison, Premolar teeth, Dentin enamel, Compressive forces, Resistance, Lithium silicate, Cemented zirconium | spa |
dc.description.degreelevel | Especialización | spa |
dc.description.degreename | Especialista en Rehabilitación Oral | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Ascanio Roa, M. A., Camargo Matajira, C. A., y Maldonado Contreras, M. T. (2019). Comparación in vitro de la resistencia a la fractura ante fuerzas compresivas, entre una restauración en silicato de litio reforzado con zirconio cementado sobre esmalte y esmalte-dentina en dientes premolares [tesis de Especialización ]. Universidad Santo Tomas, Bucaramanga, Colombia. | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/21343 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Odontología | spa |
dc.publisher.program | Especialización Rehabilitación Oral | spa |
dc.relation.references | Kelly JR. Dental ceramics: what is this stuff anyway?. J Am Dent Assoc. 2008; 139 Suppl 1: 4S - 7S. | spa |
dc.relation.references | Hunt PR. The future of esthetic dentistry. JADA. 1987; Special Issue: 106E - 112E. | spa |
dc.relation.references | Burke FJ, Kelleher MG, Wilson N, Bishop k. Introducing the concept of pragmatic esthetics, with special reference to the treatment of tooth wear. J Esthet Restor Dent 2011; 23: 277 – 93. | spa |
dc.relation.references | Kim JH, Lee S, Park JS, Ryu JJ. Fracture Load of Monolithic CAD/CAM Lithium Disilicate Ceramic Crowns and Veneered Zirconia Crowns as a Posterior Implant Restoration. Implant Dent. 2013; 22: 66 – 70. | spa |
dc.relation.references | El-Meliegy E, van Noort R. Glasses and Glass Ceramics for Medical Applications. New York: Springer, 2012. | spa |
dc.relation.references | Magne P, Schlichting LH, Maia HP, Baratieri NL. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J Prosthet Dent. 2010; 104:149 - 157. | spa |
dc.relation.references | Haroon R., Zeeshan SS., Misbahuddin, MRK. Sameer Q., Muhammad ZU. Advancements in all-ceramics for dental restorations and their effect on the wear of opposing dentition. Eur J Dent. 2016 Oct – Dec; 10(4): 583 – 588. | spa |
dc.relation.references | Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014; 93: 1235 – 1242. | spa |
dc.relation.references | ENSAB IV, 2013-2014.IV estudio nacional de salud bucal ensab IV, 2013-2014, Ministerio de Salud, Republica de Colombia. | spa |
dc.relation.references | Baladhandayutham B, Lawson NC, Burgess JO. Fracture load of ceramic restorations after fatigue loading. The Journal of Prosthetic Dentistry. 2015; 114 (2), 266 - 271. | spa |
dc.relation.references | Conrad HJ, Seong WK, Pesun IJ. Current ceramic materials and systems with clinical recommendations: A systematic review. The Journal of Prosthetic Dentistry. 2007; 98 (5), 389 - 404. | spa |
dc.relation.references | D’Arcangelo C, Vanini L, Rondoni GD, De Angelis F, Wear properties of dental ceramics and porcelains compared with human enamel, J Prosthet Dent. 2015, Mar; 115 (3): 350 - 355 | spa |
dc.relation.references | Guess PC, Schultheis S, Wolkewitz M, Zhang Y, Strub JR. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations. The Journal of Prosthetic Dentistry. 2013; 110 (4), 264 - 273. | spa |
dc.relation.references | Fages M, Slangen P, Raynal J, Corn S, Turzo K, Margerit J, et al. Comparative mechanical behavior of dentin enamel and dentin ceramic junctions assessed by speckle interferometry (SI). Dental Materials. 2012; 28 (10), E229 - E238. | spa |
dc.relation.references | Van Dijken JWV, Hasselrot L. A prospective 15-year evaluation of extensive dentin–enamel-bonded pressed ceramic coverages. Dental Materials. 2010; 26 (9), 929 - 939. | spa |
dc.relation.references | Vasconcelos AF, Barreto A, Miranda G, Pérez CR. Effect of prior silane application on the bond strength of a universal adhesive to a lithium disilicate ceramic. The Journal of Prosthetic Dentistry. 2017 nov.; 118 (5): 666 - 671. | spa |
dc.relation.references | Passia N, Lehmann F, Freitagt S, Kern M. Tensile bond strength of different universal adhesive systems to lithium disilicate ceramic. The Journal of the American Dental Association (JADA). 2015-10-01, Volúmen 146, Número 10, Páginas 729 - 734. | spa |
dc.relation.references | Arif R, Yilmaz B, Johnston WM. The Journal of Prosthetic Dentistry. 2019 Aug;122 (2): 160 - 166. | spa |
dc.relation.references | Badawya R, El-Mowafyb O, Tamb LE, Dental materials. 2016 Jul; 32 (7): 847 - 852. | spa |
dc.relation.references | Magne P, Schlichting LH, Maia HP, Baratieri LN, In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior oclusal veneres, The Journal of Prosthetic Dentistry, 2010 Sep;104 (3): 149 - 157 | spa |
dc.relation.references | Peumans W, Valjakova EB, Munck JD, Mishevska CB, Meerbeek BV. Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials. 2016;18 (4): 289 - 302. | spa |
dc.relation.references | Helvey G. A History of Dental Ceramics. 2010. Compendium, 31, 310 - 312. | spa |
dc.relation.references | Kohta A. Evaluation of the marginal fitness of tetragonal zirconia polycrystal all-ceramic restorations. Kokubyo Gakkai Zasshi. 2003 Jun;70 (2):114 - 123 | spa |
dc.relation.references | Gracis S, Thompson VP, Ferencz JL, Silva N, Bonfante EA. A new classification system for all ceramic and ceramic like restorative materials. 2015. The International journal of prosthodontics 28 (3): 227 - 235 | spa |
dc.relation.references | Piemjai M, Arksornnukit M. Compressive Fracture Resistance of Porcelain Laminates Bonded to Enamel or Dentin with Four Adhesive Systems. Journal of Prosthodontics. 2007. 16, No 6 457- 464. | spa |
dc.relation.references | Bakke M. Bite force and occlusion. Semin Orthod. 2006; 12: 120 - 126 | spa |
dc.relation.references | Craig´s restorative dental materials, 13th Edition. 2011. pages 30 - 34. | spa |
dc.relation.references | Zaslansky P, Friesem AA, Weiner S. Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: Insight into tooth function. Journal of Structural. 2006. 153: 188 –199. | spa |
dc.relation.references | La Fontaine A, Zavgorodniy A, Liu H, Zheng R, Swain M, et al. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Science Advances. 2016. 07 Sep: Vol. 2, no. 9. | spa |
dc.relation.references | Teruel JD, Alcolea A, Hernandez A, Ortiz AJ. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Archives of oral biology. 2015; 60 768 – 775 | spa |
dc.relation.references | Montoya C, Arango S, Peláez A, Arola D, Ossa EA. Effect of aging on the microstructure, hardness and chemical composition of dentin. Archives of oral biology. 2015; 60 1811 – 1820 | spa |
dc.relation.references | Dentsply Sirona. [Internet]. Argentina. Dentsply Argentina. | spa |
dc.relation.references | Rampf M, Dittmer M, Ritzberger C, Schweiger M, Höland W. Properties and crystallization phenomena in li2si2O5–ca5(PO4)3F and li2si2O5–sr5(PO4)3F glass–ceramics via twofold internal crystallization. Frontiers in Bioengineering and Biotechnology. 2015; September, Volume 3, Article 122. | spa |
dc.relation.references | Sato TP, Anami LC, Melo RM, Valandro LF, Bottino MA. Effects of Surface Treatments on the Bond Strength Between Resin Cement and a New Zirconiareinforced Lithium Silicate Ceramic. Operative Dentistry. 2016 May - Jun; 41 (3): 284 - 292. | spa |
dc.relation.references | Rinke s, Rödiger M, Ziebolz D,d Schmidt AK. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow. Hindawi Publishing Corporation Case Reports in Dentistry. 2015; 162 - 178. | spa |
dc.relation.references | Schlichting LH, Resende TH, Rodrigues K, Magne P.. Simplified treatment of severe dental erosion with ultrathin CAD-CAM composite occlusal veneers and anterior bilaminar veneers. journal of prosthetic dentistry.2016; 116: 474 - 482. | spa |
dc.relation.references | Dentsply Sirona. [Internet]. Alemania, Celtra Duo_Processing Guidelines, EN, 50539990, 0318.indd 1. | spa |
dc.relation.references | Schlichting LH, Maia HP, Baratieri LN, Magne P. Novel-design ultra-thin CAD/CAM composite resin and ceramic oclusal veneers for the treatment of severe dental erosion. The Journal of Prosthetic Dentistry.2011; Apr; 105 (4): 217 - 226. | spa |
dc.relation.references | Al-Akhali M, Chaar MS, Elsayed A, Samran A, Kern M. Fracture resistance of ceramic and polymer-based occlusal veneer restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2017 Oct; 74: 245 - 250. | spa |
dc.relation.references | Yazigi C, Kern M, Chaar MS. Influence of various bonding techniques on the fracture strength of thin CAD/CAM-fabricated occlusal glass-ceramic veneers. Journal of the Mechanical Behavior of Biomedical Materials, 2017 Nov;75: 504 - 511. | spa |
dc.relation.references | Sasse M, Krummel A, Klosa K, Kern M. Influence of restoration thickness and dentalbonding surface on the fracture resistance offull-coverage occlusal veneers made from lithium disilicate ceramic. Dental materials. 2015 Aug; 31 (8): 907- 915. | spa |
dc.relation.references | Magne P, Magne M, Belser UC. Adhesive restorations centric relation and de Dahl principle: minimally invasive approaches to localized anterior tooth erosion. The European Journal Esthetic Dentistry. 2007; 2: 260 - 273. | spa |
dc.relation.references | Lee WC, Eakle WS. Stress induced cervical lesions: review of advances in the past 10 years. J Prosthet Den.t 1996; 75 (5): 487- 494. | spa |
dc.relation.references | Johnson GH, Lepe X, Patterson A, Schäfer., Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations. the Journal of Prosthetic Dentistry. 2018 mayo; 119 (5): 826 - 832. | spa |
dc.relation.references | Wendlera M, Bellia R, Petschelta A, Mevecc D, Harrerc W, et al. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dental Materials. 2017 Jan; 33 (1): 99 - 109. | spa |
dc.relation.references | Zieden K, Acar J, Rehmann P, Wostmann B. Wear and Fracture Strength of New Ceramic Resins for Chairside Milling. Int J Prosthodont. 2018 January/February; 31 (1): 74 – 76. | spa |
dc.relation.references | Monteiro JB, Riquieria H, Prochnowb C, Guilardib LF, Pereira GK, et al. Fatigue failure load of two resin-bondedzirconia-reinforced lithium silicate glass-ceramics:Effect of ceramic thickness. Dental Materials. 2018 Jun; 34 (6): 891 – 900. | spa |
dc.relation.references | Von Maltzahn NF, Meniawy OI, Breitenbuecher N, Kohorst P, Stiesch M, et al. Fracture Strength of Ceramic Posterior Occlusal Veneers for Functional Rehabilitation of an Abrasive Dentition. Int J Prosthodont. 2018 Sep/Oct;31(5):451-452. | spa |
dc.relation.references | Stappert C, Att W, Gerds T, Strub J. Fracture resistance of different partial coverage ceramic molar restorations An in vitro investigation. JADA. 2006 Apr; 137 (4): 514 - 522. | spa |
dc.relation.references | Ferraris F. Posterior indirect adhesive restorations (PIAR): preparation designs and adhesthetics clinical protocol. The International Journal of Esthetic Dentistry. 2017;12(4):482-502. | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | In vitro comparison | spa |
dc.subject.keyword | Premolar teeth | spa |
dc.subject.keyword | Dentin enamel | spa |
dc.subject.keyword | Compressive forces | spa |
dc.subject.keyword | Resistance | spa |
dc.subject.keyword | Lithium silicate | spa |
dc.subject.keyword | Cemented zirconium | spa |
dc.subject.lemb | Materiales dentales | spa |
dc.subject.lemb | Odontología-materiales | spa |
dc.subject.lemb | Dientes | spa |
dc.subject.lemb | Cemento dental | spa |
dc.subject.proposal | Comparación in vitro | spa |
dc.subject.proposal | Dientes premolares | spa |
dc.subject.proposal | Esmalte-dentina | spa |
dc.subject.proposal | Fuerzas compresivas | spa |
dc.subject.proposal | Resistencia | spa |
dc.subject.proposal | Silicato de litio | spa |
dc.subject.proposal | Zirconio cementado | spa |
dc.title | Comparación in vitro de la resistencia a la fractura ante fuerzas compresivas, entre una restauración en silicato de litio reforzado con zirconio cementado sobre esmalte y esmalte-dentina en dientes premolares | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Especialización | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2019CamargoCarlos.pdf
- Tamaño:
- 6.12 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2019CamargoCarlos1.pdf
- Tamaño:
- 77.45 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta Aprobación Programa

- Nombre:
- 2019CamargoCarlos2.pdf
- Tamaño:
- 181.66 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización de publicación
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: