Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo

dc.contributor.advisorCamacho Poveda, Edgar Camilo
dc.contributor.advisorCalderón Chávez, Juan Manuel
dc.contributor.authorCárdenas Bohórquez, Javier Alexis
dc.contributor.authorCarrero Cuadrado, Uriel Eduardo
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938spa
dc.contributor.orcidhttps://orcid.org/0000-0002-6084-2512spa
dc.contributor.orcidhttps://orcid.org/ 0000-0002-4471-3980spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2022-07-18T20:01:43Z
dc.date.available2022-07-18T20:01:43Z
dc.date.issued2022-06-22
dc.descriptionEste proyecto de grado presenta el diseño e implementación de un controlador de posición para un UAV multi-rotor basado en redes neuronales profundas y entrenado mediante aprendizaje supervisado, tomando como referencia un controlador PID. Se detalla el proceso de selección del entorno de simulación, el controlador y el modelo seleccionado. Así mismo, se realizan evaluaciones de trayectorias de control para la construcción de un conjunto de datos que permita entrenar el modelo. Se entrenan distintas arquitecturas de redes neuronales, mediante el uso del algoritmo Hyperband para determinar los mejores hiperparámetros. Finalmente se evalúa el rendimiento del controlador entrenado con respecto al controlador base mediante la respuesta temporal con diferentes señales de control. Como producto final se presenta: el conjunto de datos del controlador de referencia, un repositorio con los programas realizados para el desarrollo y análisis, y el modelo de la red neuronal.spa
dc.description.abstractThis degree project presents the design and implementation of a position controller for a multi-rotor UAV based on deep neural networks and trained by for a multi-rotor UAV based on deep neural networks and trained by means of supervised learning supervised learning, taking as reference a PID controller. It details the process of selection of the simulation environment, the controller and the selected model is detailed. Likewise, evaluations of control trajectories control trajectories evaluations for the construction of a data set to train the model. to train the model. Different neural network architectures are trained, using the Hyperband algorithm to determine the best hyperparameters. Finally, the performance of the trained controller is evaluated with respect to the base controller by means of the temporal response with different signals. the base controller by means of the time response with different control signals. As a final product, the following is presented the dataset of the reference controller, a repository with the programs developed for the development and analysis, and development and analysis programs, and the neural network model. Translated with www.DeepL.com/Translator (free version)spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCárdenas Bohórquez, J. A. & Carrero Cuadrado, U. E. (2022).Implementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundo [Tesis de Pregrado en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucionalspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/45916
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesM Tinungki. «The analysis of partial autocorrelation function in predicting maximum wind speed». En: IOP Conference Series: Earth and Environmental Science 235 (feb. de 2019), pág. 012097. DOI: 10.1088/1755-1315/235/1/012097. URL: https://doi.org/ 10.1088/1755-1315/235/1/012097.spa
dc.relation.referencesMathworks. Quadcopter Project, MATLAB & Simulink. 2018. URL: https://de.mathworks.com/help/aeroblks/quadcopter-project.html.spa
dc.relation.referencesMichał Barty´s y Bartłomiej Hryniewicki. «The Trade-Off between the Controller Effort and Control Quality on Example of an Electro-Pneumatic Final Control Element». En: Actuators 8.1 (2019). ISSN: 2076-0825.spa
dc.relation.referencesErik Cuevas, Alonso Echavarría y Marte A. Ramírez-Ortegón. «An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation». En: Applied Intelligence 40.2 (mar. de 2014), págs. 256-272. ISSN: 1573-7497. DOI: 10 . 1007 / s10489 - 013 - 0458 - 0. URL: https://doi.org/10.1007/s10489-013-0458-0.spa
dc.relation.referencesRiccardo Poli, James Kennedy y Tim Blackwell. «Particle swarm optimization». En: Swarm Intelligence 1.1 (jun. de 2007), págs. 33-57. ISSN: 1935-3820. DOI: 10 . 1007 / s11721 - 007 - 0002 - 0. URL: https://doi.org/10.1007/s11721-007-0002-0.spa
dc.relation.referencesJ. Kennedy y R. Eberhart. «Particle swarm optimization». En: Proceedings of ICNN’95 - International Conference on Neural Networks. 1995, 1942-1948 vol.4.spa
dc.relation.referencesXue Ying. «An Overview of Overfitting and its Solutions». En: Journal of Physics: Conference Series (feb. de 2019), págs. 256-272. DOI: 10 . 1088 / 1742 - 6596 / 1168 / 2 / 022022. URL: https://www.researchgate.net/publication/331677125_An_Overview_ of_Overfitting_and_its_Solutions.spa
dc.relation.referencesLisha Li y col. «Hyperband: A novel bandit-based approach to hyperparameter optimization». En: Journal of Machine Learning Research 18 (2018), págs. 1-52. ISSN: 15337928. arXiv: 1603.06560.spa
dc.relation.referencesIBM Cloud Educationl. What are Neural Networks? 2020. URL: https : / / www . ibm . com/cloud/learn/neural-networks (visitado 23-06-2021).spa
dc.relation.referencesFethi Tekyaygil. Keras Model Wars: Sequential vs Functional. 2020. URL: https://www. datasciencearth.com/keras- model- wars- sequential- vs- functional/ (visitado 23-06-2021).spa
dc.relation.referencesJ. Astrom Karl y Tore Hagglund. PID Controllers, Theory, Design and Tuning. Second Edition. United States Of America, 1988.spa
dc.relation.references«Control System». En: CIRP Encyclopedia of Production Engineering. Ed. por Sami Chatti y col. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, págs. 359-359. ISBN: 978-3- 662-53120-4. DOI: 10.1007/978-3-662-53120-4_300118. URL: https://doi. org/10.1007/978-3-662-53120-4_300118.spa
dc.relation.referencesRufus Fraanje. quadcopter_sim. 2017. URL: https://github.com/prfraanje/quadcopter_sim (visitado 19-11-2021).spa
dc.relation.referencesJérôme Le Ny Carlos Luis. «Design of a Trajectory Tracking Controller for a Nanoquadcopter». En: (ago. de 2016). URL: https://arxiv.org/abs/1608.05786spa
dc.relation.referencesCrazyflie 2.0 – Bitcraze Store. URL: https://store.bitcraze.io/products/crazyflie-2-0.spa
dc.relation.referencesNathan Michael y col. «The GRASP Multiple Micro-UAV Testbed». En: IEEE Robotics Automation Magazine 17.3 (2010), págs. 56-65. DOI: 10.1109/MRA.2010.937855.spa
dc.relation.referencesJacopo Panerati. gym-pybullet-drones. 2022. URL: https://github.com/utiasDSL/ gym-pybullet-drones (visitado 01-02-2022).spa
dc.relation.referencesBullet Real-Time Physics Simulation | Home of Bullet and PyBullet: physics simulation for games, visual effects, robotics and reinforcement learning. URL: https://pybullet.org/ wordpress/.spa
dc.relation.referencesCharles H. Holbrow y col. «Some Physics You Need to Know». En: Modern Introductory Physics (2009), págs. 13-62. DOI: 10.1007/978-0-387-79080-0_2.spa
dc.relation.referencesWilliam Neeley. «Design and Development of a High-Performance Quadrotor Control Architecture Based on Feedback Linearization». En: Electrical and Computer Engineering ETDs (feb. de 2016). URL: https://digitalrepository.unm.edu/ece_etds/ 190.spa
dc.relation.referencesJulian Förster, Bachelor Thesis y Michael D Hamer Raffaello. «System Identification of the Crazyflie 2.0 Nano Quadrocopter». En: (2015). DOI: 10.3929/ETHZ-B-000214143.spa
dc.relation.referencesJacopo Panerati y col. Learning to Fly – a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control. 2021. arXiv: 2103 . 02142 [cs.RO].spa
dc.relation.referencesGuanya Shi y col. «Neural Lander: Stable Drone Landing Control Using Learned Dynamics». En: 2019 International Conference on Robotics and Automation (ICRA) (mayo de 2019). DOI: 10 . 1109 / icra . 2019 . 8794351. URL: http://dx.doi.org/10.1109/ICRA.2019.8794351.spa
dc.relation.referencesShashi Poddar, Rahul Kottath y Vinod Karar. «Evolution of Visual Odometry Techniques». En: CoRR abs/1804.11142 (2018). arXiv: 1804 . 11142. URL: http://arxiv.org/abs/1804.11142spa
dc.relation.referencesTommaso Bresciani. «Modelling, Identification and Control of a Quadrotor Helicopter». Lund University, ago. de 2008, págs. 1-184. URL: http : //www.control.lth.se/publications/%20http://lup.lub.lu.se/luur/ download?func=downloadFile&recordOId=8847641&fileOId=8859343.spa
dc.relation.referencesThe Physics of How Drones Fly | WIRED. 2021. URL: https://www.wired.com/2017/ 05/the-physics-of-drones/.spa
dc.relation.referencesMoti Ben-Ari. A Tutorial on Euler Angles and Quaternions. Wiezmann Institute of Science, 2014, págs. 1-22. URL: http : / / www . weizmann . ac . il / sci - tea / benari / %20https : / / www . weizmann . ac . il / sci - tea / benari / sites / sci - tea . benari / files / uploads / softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf.spa
dc.relation.referencesFrancesco Sabatino. «Quadrotor control: modeling, nonlinearcontrol design, and simulation». Tesis de mtría. KTH, Automatic Control, 2015, pág. 61spa
dc.relation.referencesDrones: Reporting for Work. URL: https://www.goldmansachs.com/insights/ technology-driving-innovation/drones/ (visitado 09-09-2020)spa
dc.relation.referencesUnidad Administrativa Especial de Aeronáutica Civil. Resolución número 04201 de 2018. Dic. de 2018. URL: https://diario-oficial.vlex.com.co/vid/resolucion numero-04201-2018-763853657 (visitado 31-08-2020).spa
dc.relation.referencesJuan Manuel Garzón y Federico Luqe. «Implementación de drones para incrementar la productividad en el agro colombiano». Colegio de Estudios Superiores de Administración - CESA, 2018, pág. 71. URL: http://hdl.handle.net/10726/2302.spa
dc.relation.referencesDavid Mayorga Perdomo. «Un dron para desminar el país». En: Perquisa 34 (nov. de 2015), págs. 6-7. URL: https://www.javeriana.edu.co/pesquisa/un-dron para-desminar-el-pais/spa
dc.relation.referencesLuz Vallejo Mejía y Sandra Milena Agudelo - Londoño. «El glifosato alza el vuelo. Análisis retórico del discurso en la prensa nacional de Colombia (2018-2019)». En: Signo y Pensamiento 38.75 (nov. de 2019), págs. 1-16. ISSN: 2027-2731. DOI: 10.11144/Javeriana.syp38-75.gava. URL: https://revistas.javeriana. edu.co/index.php/signoypensamiento/article/view/27958spa
dc.relation.referencesRedacción ImpactoTIC. Las tecnologías ’vuelan’ en el posconflicto: drones, radares y contenidos. Jun. de 2018. URL: https : / / impactotic . co / tecnologia - posconflicto - en - colombia/ (visitado 15-09-2020)spa
dc.relation.referencesMaría Jesús Guerrero Lebrón. La regulación transitoria de los operadores de aeronaves civiles pilotadas por control remoto. Inf. téc. Sep. de 2014, págs. 12-29. URL: https://dialnet. unirioja.es/servlet/revista?codigo=21839spa
dc.relation.referencesMarkus Christen y col. Zivile Drohnen - Herausforderungen und Perspektiven. 1.a ed. Vol. 66. Zürcher Hochschule für Angewandte Wissenschaften, 2018, pág. 252. ISBN: 9783728138934. DOI: 10 . 3218 / 3894 - 1. URL: https://digitalcollection.zhaw.ch/handle/11475/10584?locale=de.spa
dc.relation.referencesAISBL y SPARC. Robotics 2020 Multi-Annual Roadmap MAR ICT-24 ii for Robotics in Europe, Call 1 ICT23–Horizon 2020. 01. Feb. de 2014, pág. 308. URL: https : / / www . eu - robotics . net / cms / upload / downloads / ppp - documents/Multi-Annual_Roadmap2020_ICT-24_Rev_B_full.pdf.spa
dc.relation.referencesSPARC. What is SPARC? The Partnership for Robotics in Europe. URL: https://www.eu robotics.net/sparc/about/index.html (visitado 05-09-2020spa
dc.relation.referencesWilliam Koch y col. «Reinforcement Learning for UAV Attitude Control». En: CoRR abs/1804.04154 (2018). arXiv: 1804 . 04154. URL: http://arxiv.org/abs/1804.04154spa
dc.relation.referencesVictoria J. Hodge, Richard Hawkins y Rob Alexander. «Deep reinforcement learning for drone navigation using sensor data». En: Neural Computing and Applications 0123456789 (2020). ISSN: 14333058. DOI: 10.1007/s00521-020-05097-x. URL: https://doi. org/10.1007/s00521-020-05097-x.spa
dc.relation.referencesGuangcun Shan y col. «Control of Quadrotor Drone with Partial State Observation via Reinforcement Learning». En: Proceedings - 2019 Chinese Automation Congress, CAC 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019, págs. 1965-1968. ISBN: 9781728140940. DOI: 10.1109/CAC48633.2019.8996394spa
dc.relation.referencesSang Yun Shin, Yong Won Kang y Yong Guk Kim. «Automatic drone navigation in realistic 3d landscapes using deep reinforcement learning». En: 2019 6th International Conference on Control, Decision and Information Technologies, CoDIT 2019. Institute of Electrical y Electronics Engineers Inc., abr. de 2019, págs. 1072-1077. ISBN: 9781728105215. DOI: 10.1109/CoDIT.2019.8820322.spa
dc.relation.referencesAriel Matías y col. «Desplazamiento de un hexápodo utilizando técnicas de aprendizaje por refuerzo». En: nov. de 2014, págs. 1-4.spa
dc.relation.referencesVolodymyr Mnih y col. «Human-level control through deep reinforcement learning». En: Nature 518.7540 (2015), págs. 529-533. ISSN: 14764687. DOI: 10.1038/nature14236.spa
dc.relation.referencesYanhua Huang. «Deep Q-networks». En: Deep Reinforcement Learning: Fundamentals, Research and Applications (2020), págs. 135-160. DOI: 10.1007/978-981-15-4095-0_4.spa
dc.relation.referencesNomi Ringach y Megumi Sano. «Prioritized Experience Replay via Learnability Approximation». En: (2018), págs. 1-7.spa
dc.relation.referencesTom Schaul y col. «Prioritized experience replay». En: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings(2016), págs. 1-21. arXiv: 1511.05952.spa
dc.relation.referencesEduardo F. Morales y Julio H. Zaragoza. «An introduction to reinforcement learning». En: Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions (2011), págs. 63-80. DOI: 10.4018/978-1-60960-165-2.ch004.spa
dc.relation.referencesCovid Tesau y Gerald Tesau. «Temporal Difference Learning and TD-Gammon». En: Communications of the ACM 38.3 (1995), págs. 58-68. ISSN: 15577317. DOI: 10 . 1145 / 203330.203343.spa
dc.relation.referencesVolodymyr Mnih y col. «Asynchronous methods for deep reinforcement learning». En: 33rd International Conference on Machine Learning, ICML 2016 4 (2016), págs. 2850-2869. arXiv: 1602.01783.spa
dc.relation.referencesKai Arulkumaran y col. «Deep reinforcement learning: A brief survey». En: IEEE Signal Processing Magazine 34.6 (2017), págs. 26-38. ISSN: 10535888. DOI: 10.1109/MSP.2017. 2743240. arXiv: arXiv:1708.05866v2.spa
dc.relation.referencesYuanda Wang y col. «Compensator for Robust Quadrotor Control». En: IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019), págs. 1-13. DOI: 10.1109/TSMC.2018.2884725spa
dc.relation.referencesClaudio Rosales y col. «Neural control of a Quadrotor: A state-observer based approach». En: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018. Institute of Electrical y Electronics Engineers Inc., ago. de 2018, págs. 647-653. ISBN: 9781538613535. DOI: 10.1109/ICUAS.2018.8453303.spa
dc.relation.referencesShingo Kase y Masahiro Oya. «Adaptive tracking controller for hexacopters with a wind disturbance». En: Artificial Life and Robotics 25.2 (mayo de 2020), págs. 322-327. ISSN: 16147456. DOI: 10.1007/s10015-020-00586-7. URL: https://link.springer. com/article/10.1007/s10015-020-00586-7.spa
dc.relation.referencesV. Madhu Babu, Kaushik Das y Swagat Ku. «Designing of self tuning PID controller for AR drone quadrotor». En: 2017 18th International Conference on Advanced Robotics, ICAR 2017. Institute of Electrical y Electronics Engineers Inc., ago. de 2017, págs. 167-172. ISBN: 9781538631577. DOI: 10.1109/ICAR.2017.8023513.spa
dc.relation.referencesColin Greatwood y Arthur G. Richards. «Reinforcement learning and model predictive control for robust embedded quadrotor guidance and control». En: Autonomous Robots 43.7 (oct. de 2019), págs. 1681-1693. ISSN: 15737527. DOI: 10 . 1007 / s10514 - 019 - 09829-4. URL: https://doi.org/10.1007/s10514-019-09829-4.spa
dc.relation.referencesSiddharth Patel y col. «An Intelligent Hybrid Artificial Neural Network-Based Approach for Control of Aerial Robots». En: Journal of Intelligent and Robotic Systems: Theory and Applications 97.2 (feb. de 2020), págs. 387-398. ISSN: 15730409. DOI: 10.1007/s10846-019-01031-z.spa
dc.relation.referencesFendy Santoso y col. «Robust Hybrid Nonlinear Control Systems for the Dynamics of a Quadcopter Drone». En: IEEE Transactions on Systems, Man, and Cybernetics: Systems 50.8 (ago. de 2020), págs. 3059-3071. ISSN: 21682232. DOI: 10.1109/TSMC.2018.2836922.spa
dc.relation.referencesYahui Li y col. «Robust and adaptive backstepping control for nonlinear systems using RBF neural networks». En: IEEE Transactions on Neural Networks 15.3 (mayo de 2004), págs. 693-701. ISSN: 10459227. DOI: 10.1109/TNN.2004.826215.spa
dc.relation.referencesR. Analia, Susanto y K. Song. «Fuzzy+PID attitude control of a co-axial octocopter». En: 2016 IEEE International Conference on Industrial Technology (ICIT). 2016, págs. 1494-1499. DOI: 10.1109/ICIT.2016.7474981.spa
dc.relation.referencesTeresa Guarda y col. Territorial Intelligence in the Impulse of Economic Development Initiatives for Artisanal Fishing Cooperatives Teresa. Vol. 152. Micrads. Springer Singapore, 2020, págs. 119-132. DOI: 10 . 1007 / 978 - 981 - 13 - 9155 - 2. URL: http://link.springer.com/10.1007/978-981-13-9155-2.spa
dc.relation.referencesDongbin Lee y Timothy C. Burg. «Lyapunov-based control of unmanned aerial vehicle designed via stability analysis». En: Control Theory: Perspectives, Applications and Developments. Nova Science Publishers, Inc., abr. de 2015, págs. 277-297. ISBN: 9781634827300. DOI: 10.4155/9781634827300.ch12.spa
dc.relation.referencesE. Rogers y col. «Lyapunov stability theory for linear repetitive processes - The 1D equation approach». En: European Control Conference, ECC 1999 - Conference Proceedings (2015), págs. 4774-4779. DOI: 10.23919/ecc.1999.7100090.spa
dc.relation.referencesOualid Araar y Nabil Aouf. «Full linear control of a quadrotor UAV, LQ vs H∞». En: 2014 UKACC International Conference on Control, CONTROL 2014 - Proceedings. Institute of Electrical y Electronics Engineers Inc., oct. de 2014, págs. 133-138. ISBN: 9781479950119. DOI: 10.1109/CONTROL.2014.6915128.spa
dc.relation.referencesNurul Dayana Salim y col. «PID plus LQR attitude control for hexarotor MAV in indoor environments». En: Proceedings of the IEEE International Conference on Industrial Technology (2014), págs. 85-90. DOI: 10.1109/ICIT.2014.6894977.spa
dc.relation.referencesZhongqiu Zhang. «Application of PID Simulation Control Mode in Quadrotor Aircraft». En: Proceedings - 2020 International Conference on Computer Engineering and Application, ICCEA 2020. Institute of Electrical y Electronics Engineers Inc., mar. de 2020, págs. 826-829. ISBN: 9781728159041. DOI: 10.1109/ICCEA50009.2020.00181.spa
dc.relation.referencesHyunsoo Yang y col. Multi-rotor drone tutorial: systems, mechanics, control and state estimation. Abr. de 2017. DOI: 10.1007/s11370-017-0224-y.spa
dc.relation.referencesDaniel Torres. «Analisis Dinamico del Fallo de Rotores en un Hexacoptero». En: Journal of Chemical Information and Modeling 53.9 (2019), págs. 1689-1699. ISSN: 1098-6596. URL: http://hdl.handle.net/11349/13866.spa
dc.relation.referencesPaúl Sebastián y Dávila Aldás. «Diseño, construcción y control de un hexacóptero de monitoreo». Jun. de 2015. URL: http://bibdigital.epn.edu.ec/handle/15000/10924.spa
dc.relation.referencesDaler Sharipov y col. «Implementation of a mathematical model of a hexacopter control system». En: International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities, ICISCT 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019. ISBN: 9781728125640. DOI: 10.1109/ICISCT47635.2019.9011842spa
dc.relation.referencesQuan Quan. Introduction to multicopter design and control. Springer Singapore, jun. de 2017, págs. 1-384. ISBN: 9789811033827. DOI: 10.1007/978-981-10-3382-7spa
dc.relation.referencesKarl Johan Åström. «Process Control—Past, Present, and Future». En: IEEE Control Systems Magazine 5.3 (1985), págs. 3-10. ISSN: 02721708. DOI: 10.1109/MCS.1985.1104958.spa
dc.relation.referencesL.S. Casey. Curtiss, the Hammondsport Era, 1907-1915. Crown Publishers, 1981, págs. 12-15. ISBN: 9780517543269. URL: https : / / www . amazon . com / Curtiss - Hammondsport-1907-1915-Louis-Casey/dp/0517545659spa
dc.relation.referencesChan Chun y col. «Drone Noise Reduction using Deep Convolutional Autoencoder for UAV Acoustic Sensor Networks». En: Proceedings - 2019 IEEE 16th International Conference on Mobile Ad Hoc and S03t Systems Workshops, MASSW 2019. Institute of Electrical y Electronics Engineers Inc., nov. de 2019, págs. 168-169. ISBN: 9781728141213. DOI: 10.1109/MASSW.2019.00043spa
dc.relation.referencesNikolaos Passalis y Anastasios Tefas. «Deep reinforcement learning for controlling frontal person close-up shooting». En: Neurocomputing 335 (mar. de 2019), págs. 37-47. ISSN: 18728286. DOI: 10.1016/j.neucom.2019.01.046.spa
dc.relation.referencesPablo Guimon. EE UU mata al poderoso general iraní Soleimani en un ataque con drones en el aeropuerto de Bagdad. Washington, ene. de 2020. URL: https : / / elpais . com / internacional / 2020 / 01 / 03 / actualidad / 1578010671 _ 559662 . html (visitado 29-09-2020)spa
dc.relation.referencesVictor Delgado Hernando. Historia de los drones - El Drone. 2016. URL: http://eldrone.es/historia-de-los-drones/ (visitado 31-08-2020)spa
dc.relation.referencesJ.D. Blom. Occasional Paper 37 Unmanned Aerial Systems: A Historical Perspective. BiblioBazaar, 2012, pág. 153. ISBN: 9781249426707. URL: https://books.google.com.co/books?id=v-i5NAEACAAJ.spa
dc.relation.referencesGarrett Dale Mckinnon. The Birth of a Drone Nation: American Unmanned Aerial Vehicles Since 1917. Inf. téc. 2014. URL: https://digitalcommons.lsu.edu/gradschool_ theses/403spa
dc.relation.referencesLei Tai, Giuseppe Paolo y Ming Liu. «Virtual-to-real Deep Reinforcement Learning: Continuous control of mobile robots for mapless navigation». En: arXiv (2017), págs. 1-6.spa
dc.relation.referencesOlov Andersson, Mariusz Wzorek y Patrick Doherty. «Deep learning quadcopter control via risk-aware active learning». En: 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (2017), págs. 3812-3818.spa
dc.relation.referencesRuiz D. y Bravo M. «Navegación autónoma y evasión de obstáculos en UAV usando aprendizaje por refuerzo». En: Universidad Santo Tomas, Bogotá (2019), págs. 1-95. URL: http://hdl.handle.net/11634/19029.spa
dc.relation.referencesVemema Kangunde, Rodrigo S. Jamisola y Emmanuel K. Theophilus. «A review on drones controlled in real-time». En: International Journal of Dynamics and Control 9.4 (dic. de 2021), págs. 1832-1846. ISSN: 2195-2698spa
dc.relation.referencesT. Lee, M. Leok y N. H. McClamroch. «Geometric tracking control of a quadrotor UAV on SE(3)». En: 49th IEEE Conference on Decision and Control (CDC). 2010, págs. 5420-5425spa
dc.relation.referencesAmine Abadi y col. «Sliding mode control of quadrotor based on differential flatness». En: 2018 International Conference on Control, Automation and Diagnosis, ICCAD 2018. Institute of Electrical y Electronics Engineers Inc., mar. de 2018. ISBN: 9781538654071. DOI: 10.1109/CADIAG.2018.8751334.spa
dc.relation.referencesS. Norouzi Ghazbi y col. «Quadrotors unmanned aerial vehicles: A review». En: International Journal on Smart Sensing and Intelligent Systems 9.1 (mar. de 2016), págs. 309-333. ISSN: 11785608. DOI: 10.21307/ijssis-2017-872.spa
dc.relation.referencesGabriel M. Hoffmann y col. «Quadrotor helicopter flight dynamics and control: Theory and experiment». En: Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2007. Vol. 2. 2007, págs. 1670-1689. ISBN: 1563479044. DOI: 10.2514/6.2007-6461.spa
dc.relation.referencesHugo Manuel Romero Pineda y Daniel Felipe Torres Cardozo. «Análisis Dinámico del Fallo de Rotores en un Hexacóptero». Tesis doct. Bogotá D.C.: Universidad Distrital Francisco José de Caldas, jun. de 2018, pág. 83. URL: http : / / hdl . handle . net / 11349/13866spa
dc.relation.referencesP. Castillo, R. Lozano y A. Dzul. «Stabilization of a mini rotorcraft with four rotors». En: IEEE Control Systems Magazine 25.6 (2005), págs. 45-55.spa
dc.relation.referencesHugo Manuel Romero Pineda y Daniel Felipe Torres Cardozo. «Análisis Dinámico del Fallo de Rotores en un Hexacóptero». Tesis doct. Bogotá D.C.: Universidad Distrital Francisco José de Caldas, jun. de 2018, pág. 83. URL: http : / / hdl . handle . net / 11349/13866.spa
dc.relation.referencesMadhu Babu Vankadari y col. «A Reinforcement Learning Approach for Autonomous Control and Landing of a Quadrotor». En: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018. Institute of Electrical y Electronics Engineers Inc., ago. de 2018, págs. 676-683. ISBN: 9781538613535. DOI: 10.1109/ICUAS.2018.8453468spa
dc.relation.referencesBy Hyon Lim y col. «Open-Source Projects on Unmanned Aerial Vehicles». En: IEEE Robotics and Automation Magazine SEPTEMBER 2012 (2012), págs. 33-45. DOI: 10.1109/ MRA.2012.2205629.spa
dc.relation.referencesBello Guisado Ángel. «Diseño de controladores de vuelo para un dron modelo PARROT Mambo Minidrone». Feb. de 2019. URL: http://hdl.handle.net/10251/117441.spa
dc.relation.referencesFrancesco Rodella. El desafío de hacer volar drones sin ayuda humana | Tecnología | EL PAÍS. Oct. de 2018. URL: https : / / elpais . com / tecnologia / 2018 / 10 / 18 / actualidad/1539884534_864286.html (visitado 29-09-2020).spa
dc.relation.referencesWissenschaft und Forschung. URL: https : / / www . microdrones . com / de / anwendungen / wissenschaft - und - forschung/ (visitado 10-09-2020).spa
dc.relation.referencesJuan Lastra. «Diseño de un dron programable de bajo costo». En: Repositorio Universidad de Cantabria (ago. de 2017), págs. 1-132. URL: http://hdl.handle.net/10902/ 12091.spa
dc.relation.referencesFlying High: Drone Use in Fisheries Research - FISHBIO Fisheries Research, Monitoring, and Conservation. URL: https://fishbio.com/field-notes/the-fish-report/ flying-high-drone-use-fisheries-research (visitado 10-09-2020).spa
dc.relation.referencesAshvin Nair y col. AWAC: Accelerating Online Reinforcement Learning with Offline Datasets. 2021. arXiv: 2006.09359 [cs.LG].spa
dc.relation.referencesGang Shi y Shuxing Yang. «Intelligent control of UAV with neuron-fuzzy approach under hierarchical architecture». En: 2008 7th World Congress on Intelligent Control and Automation. 2008, págs. 5238-5243. DOI: 10.1109/WCICA.2008.4594539.spa
dc.relation.referencesJianhai Zhang y col. «Approximation Capability of a Novel Neural Network Model for Dynamic Systems». En: 2009 Second International Conference on Intelligent Computation Technology and Automation. Vol. 1. 2009, págs. 59-62. DOI: 10.1109/ICICTA.2009.23spa
dc.relation.referencesM. A. Boon, A. P. Drijfhout y S. Tesfamichael. «Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study». En: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42 (2W6 ago. de 2017), págs. 47-54. ISSN: 16821750. DOI: 10.5194/ISPRS-ARCHIVES-XLII-2-W6-47-2017spa
dc.relation.referencesKavita Gupta, Sandhya Bansal y Rajiv Goel. «Uses of Drones In Fighting COVID-19 Pandemic». En: 2021 10th International Conference on System Modeling Advancement in Research Trends (SMART). 2021, págs. 651-655spa
dc.relation.referencesDaniel A Rincón-Riveros y col. «Automation System Based on NLP for Legal Clinic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 283-288.spa
dc.relation.referencesLaura J Padilla Reyes y col. «Adaptable Recommendation System for Outfit Selection with Deep Learning Approach». En: IFAC-PapersOnLine 54.13 (2021), págs. 605-610.spa
dc.relation.referencesNicolás Gómez y col. «Leader-follower Behavior in Multi-agent Systems for Search and Rescue Based on PSO Approach». En: SoutheastCon 2022. IEEE. 2022, págs. 413-420.spa
dc.relation.referencesGA Cardona y col. «Autonomous navigation for exploration of unknown environments and collision avoidance in mobile robots using reinforcement learning». En: 2019 SoutheastCon. IEEE. 2019, págs. 1-7spa
dc.relation.referencesEdgar C Camacho, Jose Guillermo Guarnizo, Juan M Calderon y col. «Design and Construction of a Cost-Oriented Mobile Robot for Domestic Assistance». En: IFAC-PapersOnLine 54.13 (2021), págs. 293-298.spa
dc.relation.referencesEdgar C Camacho, Nestor I Ospina y Juan M Calderón. «COVID-Bot: UV-C Based Autonomous Sanitizing Robotic Platform for COVID-19». En: Ifac-papersonline 54.13 (2021), págs. 317-322.spa
dc.relation.referencesNestor I Ospina y col. «Argrohbots: An affordable and replicable ground homogeneous robot swarm testbed». En: IFAC-PapersOnLine 54.13 (2021), págs. 256-261.spa
dc.relation.referencesGustavo A Cardona y col. «Adaptive Multi-Quadrotor Control for Cooperative Transportation of a Cable-Suspended Load». En: 2021 European Control Conference (ECC). IEEE. 2021, págs. 696-701.spa
dc.relation.referencesGustavo A Cardona y col. «Robust adaptive synchronization of interconnected heterogeneous quadrotors transporting a cable-suspended load». En: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021, págs. 31-37.spa
dc.relation.referencesJuan D Pabon y col. «Event-Triggered Control for Weight-Unbalanced Directed Robot Networks». En: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, págs. 5831-5836.spa
dc.relation.referencesWilson O Quesada y col. «Leader-follower formation for uav robot swarm based on fuzzy logic theory». En: International Conference on Artificial Intelligence and Soft Computing. Springer. 2018, págs. 740-751.spa
dc.relation.referencesGustavo A Cardona y Juan M Calderon. «Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations». En: Applied Sciences 9.8 (2019), pág. 1702.spa
dc.relation.referencesSaith Rodríguez y col. «STOx’s 2016 Team description paper». En: (2013).spa
dc.relation.referencesSaith Rodríguez y col. «Fast path planning algorithm for the robocup small size league». En: Robot Soccer World Cup. Springer. 2014, págs. 407-418spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordDronespa
dc.subject.keywordNeural Networkspa
dc.subject.keywordSupervised Trainingspa
dc.subject.keywordDeep Learningspa
dc.subject.keywordFlight Controllerspa
dc.subject.lembAviones no tripuladosspa
dc.subject.lembVehículos no tripuladosspa
dc.subject.lembAeronáuticaspa
dc.subject.lembSimuladores de vuelospa
dc.subject.lembDronesspa
dc.subject.proposalDronspa
dc.subject.proposalRed Neuronalspa
dc.subject.proposalAprendizaje Supervisadospa
dc.subject.proposalAprendizaje Profundospa
dc.subject.proposalControlador de Vuelospa
dc.titleImplementación de controlador de vuelo para vehículos aéreos no tripulados multi-rotor basado en técnicas de aprendizaje profundospa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2022JavierCardenasUrielCarrero.pdf
Tamaño:
15.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado
Thumbnail USTA
Nombre:
Carta_aprobacion_Biblioteca. CARDENAS Y CARRERO.pdf
Tamaño:
327.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad
Thumbnail USTA
Nombre:
Carta_autorizacion_autoarchivo_autor_2022.pdf
Tamaño:
346.23 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta autorización autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: