Modelo mecanobiológico de daño a escala micro en hueso trabecular primario

dc.contributor.authorLibardo Rojas, Josespa
dc.contributor.authorGarzón, Diegospa
dc.contributor.authorNarváez, Carlosspa
dc.contributor.authorLópez, Oscarspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000531359spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000130989spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000195065spa
dc.contributor.cvlachttps://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000621803spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=V0oEE7cAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Q4OJ8mQAAAAJ&hl=esspa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=E1Fw2WcAAAAJ&hl=es&oi=aospa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=hhrFXnIAAAAJ&hl=es&oi=aospa
dc.contributor.orcidhttps://orcid.org/0000-0001-7845-1299spa
dc.contributor.orcidhttps://orcid.org/0000-0002-0359-839Xspa
dc.contributor.orcidhttps://orcid.org/0000-0001-5750-2923spa
dc.contributor.orcidhttps://orcid.org/0000-0001-6102-9841spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-04-20T16:21:04Zspa
dc.date.available2020-04-20T16:21:04Zspa
dc.date.issued2019-08spa
dc.descriptionEl hueso trabecular es una compleja estructura tridimensional, consiste en placas y laminillas que delimitan cavidades en las que se ubica la médula ósea, se produce a partir de un molde de cartílago de crecimiento mediante la osificación endocondral y alcanza su madurez morfológica durante el crecimiento por el modelado y remodelado óseo. El estímulo mecánico es altamente influyente en el proceso celular del desarrollo de este tejido, un desbalance del estímulo produce la variación en la expresión y diferenciación celular que conllevan a patologías que impiden su correcto desarrollo. Los modelos computacionales mecano-biológicos emplean varias herramientas de la mecánica de medio continuo. Específicamente emplean leyes de conservación que en conjunto con ecuaciones constitutivas correctamente planteadas pueden simular el comportamiento de los tejidos biológicos. En esta propuesta de investigación se presenta la planeación que orientará la ejecución de un modelo mecanobiológico de daño que permita estudiar el efecto del estímulo mecánico en la producción de microfracturas en las trabéculas por la variación en la expresión y diferenciación celular.spa
dc.description.abstractTrabecular bone is a complex three-dimensional structure, consisting of plates and lamella that delimit cavities in which the bone marrow is located, is produced from a growth cartilage mold by endochondral ossification, and reaches morphological maturity during growth by bone modeling and remodeling. The mechanical stimulus is highly influential in the cellular process of the development of this tissue, an imbalance of the stimulus produces the variation in cellular expression and differentiation that lead to pathologies that impede its correct development. Mechanical-biological computational models employ various tools of continuous medium mechanics. Specifically, they use conservation laws that together with correctly formulated constitutive equations can simulate the behavior of biological tissues. This research proposal presents the planning that will guide the execution of a mechanobiological model of damage that allows studying the effect of the mechanical stimulus on the production of microfractures in the trabeculae by variation in cell expression and differentiation.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttp://hdl.handle.net/11634/22616
dc.relation.referencesE. J. Mackie, Y. a Ahmed, L. Tatarczuch, K.-S. Chen, and M. Mirams, “Endochondral ossification: how cartilage is converted into bone in the developing skeleton.,” Int. J. Biochem. Cell Biol., vol. 40, no. 1, pp. 46–62, Jan. 2008.spa
dc.relation.referencesA. J. S. Summerlee, “Bone formation and development,” Bone Clin. Orthop., pp. 1–21, 2002.spa
dc.relation.referencesR. Ruimerman, P. Hilbers, B. Van Rietbergen, and R. Huiskes, “A theoretical framework for strain-related trabecular bone maintenance and adaptation,” J. Biomech., vol. 38, no. 4, pp. 931–941, 2005spa
dc.relation.referencesJ. Chen, C. Liu, L. You, and C. A. Simmons, “Boning up on Wolff ’ s Law : Mechanical regulation of the cells that make and maintain bone,” J. Biomech., vol. 43, no. 1, pp. 108–118, 2010spa
dc.relation.referencesS. D. Badilatti, G. A. Kuhn, S. J. Ferguson, and R. Müller, “Computational modelling of bone augmentation in the spine,” J. Orthop. Transl., vol. 3, no. 4, pp. 185–196, 2015.spa
dc.relation.referencesH. Isaksson, “Recent advances in mechanobiological modeling of bone regeneration,” vol. 42, pp. 22–31, 2012spa
dc.relation.referencesG. Bini, F. Bini, R. Bedini, A. Marinozzi, and F. Marinozzi, “A topological look at human trabecular bone tissue,” Math. Biosci., vol. 288, pp. 159–165, 2017spa
dc.relation.references] I. Goda, J. F. Ganghoffer, S. Czarnecki, R. Czubacki, and P. Wawruch, “Topology optimization of bone using cubic material design and evolutionary methods based on internal remodeling,” Mech. Res. Commun., vol. 95, pp. 52–60, 2019.spa
dc.relation.referencesL. Allas, K. Boumédiene, and C. Baugé, “Epigenetic dynamic during endochondral ossification and articular cartilage development,” Bone, vol. 120, no. August 2018, pp. 523–532, 2019.spa
dc.relation.referencesR. Nishimura, K. Hata, K. Ono, R. Takashima, M. Yoshida, and T. Yoneda, “Regulation of endochondral ossification by transcription factors,” J. Oral Biosci., vol. 54, no. 4, pp. 180–183, 2012spa
dc.relation.referencesD. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblaré, “Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism.,” Comput. Biol. Med., vol. 39, no. 6, pp. 554–61, Jun. 2009spa
dc.relation.referencesS. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elast., vol. 6, no. 3, pp. 313–326, 1976spa
dc.relation.referencesR. Huiskes, R. Ruimerman, L. G Harry van, and J. D Janssen, “Effects of mechanical forces on maintenance and adaptation of form in trabecular bone,” Nature, vol. 405, no. 6787, pp. 704–706, 2000spa
dc.relation.referencesK. I. Tsubota, Y. Suzuki, T. Yamada, M. Hojo, A. Makinouchi, and T. Adachi, “Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff’s law,” J. Biomech., vol. 42, no. 8, pp. 1088–1094, 2009spa
dc.relation.referencesB. Depalle, R. Chapurlat, H. Walter-Le-Berre, B. Bou-Saïd, and H. Follet, “Finite element dependence of stress evaluation for human trabecular bone,” J. Mech. Behav. Biomed. Mater., vol. 18, pp. 200–212, 2013spa
dc.relation.referencesH. Wang, B. Ji, X. S. Liu, X. E. Guo, Y. Huang, and K. C. Hwang, “Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process,” J. Biomech., vol. 45, no. 14, pp. 2417–2425, 2012spa
dc.relation.referencesM. I. Pastrama, S. Scheiner, P. Pivonka, and C. Hellmich, “A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation,” Bone, vol. 107, pp. 208–221, 2018.spa
dc.relation.referencesM. M. A. Peyroteo, J. Belinha, S. Vinga, L. M. J. S. Dinis, and R. M. Natal Jorge, “Mechanical bone remodelling: Comparative study of distinct numerical approaches,” Eng. Anal. Bound. Elem., vol. 100, no. January 2018, pp. 125–139, 2019spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordBiomechanicsspa
dc.subject.keywordMechanobiologyspa
dc.subject.keywordFinite elementsspa
dc.subject.keywordPrimary trabecular bone  spa
dc.subject.proposalBiomecánicaspa
dc.subject.proposalMecanobiologíaspa
dc.subject.proposalElementos finitosspa
dc.subject.proposalHueso trabecular primariospa
dc.titleModelo mecanobiológico de daño a escala micro en hueso trabecular primariospa
dc.type.categoryFormación de Recurso Humano para la Ctel: Proyecto ejecutado con investigadores en empresas, industrias y Estadospa

Archivos

Bloque original

Mostrando 1 - 5 de 5
Cargando...
Miniatura
Nombre:
2019oscarlopez1.pdf
Tamaño:
881.72 KB
Formato:
Adobe Portable Document Format
Descripción:
Propuesta FODEIN 2020
Cargando...
Miniatura
Nombre:
2019oscarlopez2.pdf
Tamaño:
466.82 KB
Formato:
Adobe Portable Document Format
Descripción:
Acta comite de investigación
Cargando...
Miniatura
Nombre:
2019oscarlopez3.pdf
Tamaño:
145.93 KB
Formato:
Adobe Portable Document Format
Descripción:
Aval GEAMEC
Cargando...
Miniatura
Nombre:
2019oscarlopez4.pdf
Tamaño:
476.68 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta intencion GNUM
Cargando...
Miniatura
Nombre:
2019oscarlopez5.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Reporte turnitin

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones