Production of Polyunsaturated Fatty Acids and Lipids from Autotrophic, Mixotrophic and Heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832
dc.contributor.author | Yate, Camilo | spa |
dc.contributor.author | López Ramírez, Gina Pilar | spa |
dc.contributor.author | Ramos Rodriguez, Freddy Alejandro | spa |
dc.contributor.author | Cala Molina, Mónica Patricia | spa |
dc.contributor.author | Restrepo Restrepo, Silvia | spa |
dc.contributor.author | Baena Garzon, Sandra | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000526029 | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000084816 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001418965 | spa |
dc.contributor.cvlac | http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000468800 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000074721 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=Denh6lcAAAAJ | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=7_dVIeAAAAAJ&hl=es | spa |
dc.contributor.gruplac | https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000001127 | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-8198-726X | spa |
dc.contributor.orcid | https://orcid.org/0000-0001-9016-1040 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-05-19T23:54:12Z | spa |
dc.date.available | 2020-05-19T23:54:12Z | spa |
dc.date.issued | 2019-07-25 | spa |
dc.description.abstract | A search for extremophile organisms producing bioactive compounds led us to isolate a microalga identified as Galdieria sp. USBA-GBX-832 from acidic thermal springs. We have cultured Galdieria sp. USBA-GBX-832 under autotrophic, mixotrophic and heterotrophic conditions and determined variations of its production of biomass, lipids and PUFAs. Greatest biomass and PUFA production occurred under mixotrophic and heterotrophic conditions, but the highest concentration of lipids occurred under autotrophic conditions. Effects of variations of carbon sources and temperature on biomass and lipid production were evaluated and factorial experiments were used to analyze the effects of substrate concentration, temperature, pH, and organic and inorganic nitrogen on biomass production, lipids and PUFAs. Production of biomass and lipids was significantly dependent on temperature and substrate concentration. Greatest accumulation of PUFAs occurred at the lowest temperature tested. PUFA profiles showed trace concentrations of arachidonic acid (C20:4) and eicosapentaenoic acid (C20:5). This is the first time synthesis of these acids has been reported in Galdieria. These findings demonstrate that under heterotrophic conditions this microalga’s lipid profile is significantly different from those observed in other species of this genus which indicates that the culture conditions evaluated are key determinants of these organisms’ responses to stress conditions and accumulation of these metabolites. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | López, G., Yate, C., Ramos, F. A., Cala, M. P., Restrepo, S., & Baena, S. (2019). Production of Polyunsaturated Fatty Acids and Lipids from Autotrophic, Mixotrophic and Heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Scientific reports, 9(1), 10791. https://doi.org/10.1038/s41598-019-46645-3 | spa |
dc.identifier.doi | https://doi.org/10.1038/s41598-019-46645-3 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/23324 | |
dc.relation.references | Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E. & Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research 45, 11–36, https://doi.org/10.1016/j.watres.2010.08.037 (2011). | spa |
dc.relation.references | Villarruel-López, A., Ascencio, F. & Nuño, K. Microalgae, a Potential Natural Functional Food Source – a Review. Polish. Journal of Food and Nutrition Sciences 67, 251–263, https://doi.org/10.1515/pjfns-2017-0017 (2017). | spa |
dc.relation.references | Hulatt, C. J., Berecz, O., Egeland, E. S., Wijfels, R. H. & Kiron, V. Polar snow algae as a valuable source of lipids? Bioresource Technology 235, 338–347, https://doi.org/10.1016/j.biortech.2017.03.130 (2017). | spa |
dc.relation.references | Cheng, F., Cui, Z., Mallick, K., Nirmalakhandan, N. & Brewer, C. E. Hydrothermal liquefaction of high- and low-lipid algae: Mass and energy balances. Bioresource Technology 258, 158–167, https://doi.org/10.1016/j.biortech.2018.02.100 (2018). | spa |
dc.relation.references | Hess, S. K., Lepetit, B., Kroth, P. G. & Stefan, M. Production of chemicals from microalgae lipids – status and perspectives. European Journal of Lipid Science and Technology 120, 1700152, https://doi.org/10.1002/ejlt.201700152 (2018) | spa |
dc.relation.references | Sun, X.-M., Ren, L.-J., Zhao, Q.-Y., Ji, X.-J. & Huang, H. Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1864, 552–566, https://doi.org/10.1016/j. bbalip.2018.10.004 (2019). | spa |
dc.relation.references | Yen, H.-W. et al. Microalgae-based biorefnery – From biofuels to natural products. Bioresource Technology 135, 166–174, https:// doi.org/10.1016/j.biortech.2012.10.099 (2013). | spa |
dc.relation.references | Sun, X.-M., Ren, L.-J., Zhao, Q.-Y., Ji, X.-J. & Huang, H. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for Biofuels 11, 272, https://doi.org/10.1186/s13068-018-1275-9 (2018). | spa |
dc.relation.references | Chandra, R., Iqbal, H. M. N., Vishal, G., Lee, H.-S. & Nagra, S. Algal biorefnery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresource Technology 278, 346–359, https://doi.org/10.1016/j.biortech.2019.01.104 (2019). | spa |
dc.relation.references | Chew, K. W. et al. Microalgae biorefinery: High value products perspectives. Bioresource Technology 229, 53–62, https://doi. org/10.1016/j.biortech.2017.01.006 (2017). | spa |
dc.relation.references | Guihéneuf, F. & Stengel, D. B. LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n3 LC-PUFA triggered by nitrogen limitation and inorganic carbón availability in the marine haptophyte Pavlova lutheri. Marine Drugs 11, 4246–4266, https://doi.org/10.3390/md11114246 (2013). | spa |
dc.relation.references | Zili, F. et al. Mixotrophic cultivation promotes growth, lipid productivity, and PUFA production of a thermophilic Chlorophyta strain related to the genus Graesiella. Journal of Applied Phycology 29, 35–43, https://doi.org/10.1007/s10811-016-0941-1 (2017). | spa |
dc.relation.references | Tejeda-Benítez, L., Henao-Argumedo, D., Alvear-Alayón, M. & Castillo-Saldarriaga, C. R. Caracterización y perfl lipídico de aceites de microalgas. Facultad de Ingeniería 24, 43–54 (2015) | spa |
dc.relation.references | Donot, F. et al. Analysis of neutral lipids from microalgae by HPLC-ELSD and APCI-MS/MS. Journal of Chromatography B 942, 98–106, https://doi.org/10.1016/j.jchromb.2013.10.016 (2013). | spa |
dc.relation.references | Sun, X.-M. et al. Infuence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. Bioresource Technology 250, 868–876, https://doi.org/10.1016/j.biortech.2017.11.005 (2018) | spa |
dc.relation.references | Ciniglia, C., Yoon, H. S., Pollio, A., Pinto, G. & Bhattacharya, D. Hidden biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology 13, 1827–1838, https://doi.org/10.1111/j.1365-294X.2004.02180.x (2004). | spa |
dc.relation.references | Yoon, H. S. et al. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evolutionary Biology 6, 78, https://doi.org/10.1186/1471-2148-6-78 (2006) | spa |
dc.relation.references | Lehr, C. R. et al. Cyanidia (Cyanidiales) Population Diversity and Dynamics in an Acid-Sulfate-Chloride Spring in Yellowstone National Park. Journal of phycology 43, 3–14, https://doi.org/10.1111/j.1529-8817.2006.00293.x (2007). | spa |
dc.relation.references | Gross, W. & Oesterhelt, C. Ecophysiological Studies on the Red Alga Galdieria sulphuraria Isolated from Southwest Iceland. Plant biology 1, 694–700, https://doi.org/10.1111/j.1438-8677.1999.tb00282.x (1999) | spa |
dc.relation.references | Carfagna, S. et al. Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae). Plant and Cell Physiology 57, 1890–1898, https://doi.org/10.1093/pcp/pcw112 (2016). | spa |
dc.relation.references | Carfagna, S. et al. Diferent characteristics of C-phycocyanin (C-PC) in two strains of the extremophilic Galdieria phlegrea. Algal. Research 31, 406–412, https://doi.org/10.1016/j.algal.2018.02.030 (2018) | spa |
dc.relation.references | Gross, W. & Schnarrenberger, C. Heterotrophic Growth of Two Strains of the Acido-Termophilic Red Alga Galdieria sulphuraria. Plant and Cell Physiology 36, 633–638, https://doi.org/10.1093/oxfordjournals.pcp.a078803 (1995). | spa |
dc.relation.references | Minoda, A. et al. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Applied Microbiology and Biotechnology 99, 1513–1519, https://doi.org/10.1007/s00253-014-6070-3 (2015). | spa |
dc.relation.references | Wan, M. et al. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresource Technology 218, 272–278, https://doi.org/10.1016/j.biortech.2016.06.045 (2016) | spa |
dc.relation.references | Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S. & Lee, D.-J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances 36, 54–67, https://doi.org/10.1016/j.biotechadv.2017.09.009 (2018). | spa |
dc.relation.references | Graziani, G. et al. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food & Function 4, 144–152, https://doi.org/10.1039/c2fo30198a (2013). | spa |
dc.relation.references | Chen, G.-Q. & Chen, F. Growing Phototrophic Cells without Light. Biotechnology Letters 28, 607–616, https://doi.org/10.1007/ s10529-006-0025-4 (2006). | spa |
dc.relation.references | Vítová, M., Goecke, F., Sigler, K. & Řezanka, T. Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH. Algal. Research 13, 218–226, https://doi.org/10.1016/j.algal.2015.12.005 (2016). | spa |
dc.relation.references | Running, W. Computer Sofware Reviews. Chapman and Hall Dictionary of Natural Products on CD-ROM. Journal of chemical information and computer sciences 33, 934–935, https://pubs.acs.org/doi/10.1021/ci00016a603 (1993). | spa |
dc.relation.references | Serive, B. et al. Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups. PLOS ONE 12, e0171872, https://doi.org/10.1371/journal.pone.0171872 (2017). | spa |
dc.relation.references | Ferris, M. J. et al. Algal species and light microenvironment in a low-pH, geothermal microbial mat community. Applied and environmental microbiology 71, 7164–7171, https://doi.org/10.1128/aem.71.11.7164-7171.2005 (2005) | spa |
dc.relation.references | Sakurai, T. et al. Profling of lipid and glycogen accumulations under diferent growth conditions in the sulfothermophilic red alga Galdieria sulphuraria. Bioresource Technology 200, 861–866, https://doi.org/10.1016/j.biortech.2015.11.014 (2016). | spa |
dc.relation.references | Gómez-Gómez, J. A., Giraldo-Estrada, C., Habeych, D. & Baena, S. Evaluation of biological production of lactic acid in a synthetic medium and in Aloe vera (L.) Burm. f. processing by-products. Universitas Scientiarum 20, 17, https://doi.org/10.11144/Javeriana. SC20-3.eobp (2015) | spa |
dc.relation.references | Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B. & Wijfels, R. H. Te impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology 124, 217–226, https://doi.org/10.1016/j. biortech.2012.08.003 (2012). | spa |
dc.relation.references | Muppaneni, T. et al. Hydrothermal liquefaction of Cyanidioschyzon merolae and the infuence of catalysts on products. Bioresource Technology 223, 91–97, https://doi.org/10.1016/j.biortech.2016.10.022 (2017). | spa |
dc.relation.references | Lukeš, M., Giordano, M. & Prášil, O. Te efect of environmental factors on fatty acid composition of Chromera velia (Chromeridae). Journal of Applied Phycology 29, 1791–1799, https://doi.org/10.1007/s10811-017-1114-6 (2017). | spa |
dc.relation.references | Lang, I., Hodac, L., Friedl, T. & Feussner, I. Fatty acid profles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology 11, 124–139, https://doi.org/10.1186/1471-2229-11- 124 (2011) | spa |
dc.relation.references | Chaisutyakorn, P., Praiboon, J. & Kaewsuralikhit, C. Te efect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. Journal of Applied Phycology 30, 37–45, https://doi.org/10.1007/s10811-017-1186- 3 (2018). | spa |
dc.relation.references | Kadar, Z. et al. Hydrogen production from paper sludge hydrolysate. Applied Biochemistry and Biotechnology 105–108, 557–566, https://doi.org/10.1385/ABAB:107:1-3:557 (2003). | spa |
dc.relation.references | Stingl, U. et al. Dilution-to-Extinction Culturing of Psychrotolerant Planktonic Bacteria from Permanently Ice-covered Lakes in the McMurdo Dry Valleys, Antarctica. Microbial Ecology 55, 395–405, https://doi.org/10.1007/s00248-007-9284-4 (2008). | spa |
dc.relation.references | Hall, T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98 (1999). | spa |
dc.relation.references | Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410, https://doi.org/10.1016/s0022-2836(05)80360-2 (1990). | spa |
dc.relation.references | Watson, L. P., McKee, A. E. & Merrell, B. R. Preparation of microbiological specimens for scanning electron microscopy. Scanning electron microscopy, 45–56 (1980) | spa |
dc.relation.references | Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purifcation. Canadian Journal of Biochemistry and Physiology 37, 911–917, https://doi.org/10.1139/o59-099 (1959). | spa |
dc.relation.references | Cavonius, L. R., Carlsson, N. G. & Undeland, I. Quantifcation of total fatty acids in microalgae: comparison of extraction and transesterifcation methods. Analytical and Bioanalytical Chemistry 406, 7313–7322, https://doi.org/10.1007/s00216-014-8155-3 (2014). | spa |
dc.relation.references | González-Menéndez, V. et al. Multicomponent Analysis of the Diferential Induction of Secondary Metabolite Profles in Fungal Endophytes. Molecules 21, 234, https://doi.org/10.3390/molecules21020234 (2016). | spa |
dc.relation.references | Whiley, L., Godzien, J., Ruperez, F. J., Legido-Quigley, C. & Barbas, C. In-vial dual extraction for direct LC-MS analysis of plasma for comprehensive and highly reproducible metabolic fngerprinting. Analytical Chemistry 84, 5992–5999, https://doi.org/10.1021/ ac300716u (2012). | spa |
dc.relation.references | Gil de la Fuente, A. et al. Knowledge-based metabolite annotation tool: CEU Mass Mediator. Journal of Pharmaceutical and Biomedical Analysis 154, 138–149, https://doi.org/10.1016/j.jpba.2018.02.046 (2018). | spa |
dc.relation.references | RStudio: Integrated Development for R. (RStudio, Inc., Boston, MA 2015). | spa |
dc.relation.references | Deng, Q. et al. Single frequency intake of alpha-linolenic acid rich phytosterol esters attenuates atherosclerosis risk factors in hamsters fed a high fat diet. Lipids Health Disease 15, 23, https://doi.org/10.1186/s12944-016-0185-8 (2016). | spa |
dc.relation.references | da Costa, E. et al. Valorization of Lipids from Gracilaria sp. through Lipidomics and Decoding of Antiproliferative and AntiInfammatory Activity. Marine Drugs 15, E62, https://doi.org/10.3390/md15030062 (2017). | spa |
dc.relation.references | Bilal, M., Rasheed, T., Ahmed, I. & Iqbal, H. M. N. High-value compounds from microalgae with industrial exploitability - A review. Frontiers In Bioscience (Scholar Edition) 9, 319–342 (2017). | spa |
dc.relation.references | van Hoogevest, P. Review – An update on the use of oral phospholipid excipients. European Journal of Pharmaceutical Sciences 108, 1–12, https://doi.org/10.1016/j.ejps.2017.07.008 (2017). | spa |
dc.relation.references | You, H. et al. Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy. Bioorganic & Medicinal Chemistry 23, 1453–1462, https://doi.org/10.1016/j.bmc.2015.02.014 (2015). | spa |
dc.relation.references | Miranda, N. et al. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis. Journal of Photochemistry and Photobiology B: Biology 174, 342–354, https://doi.org/10.1016/j.jphotobiol.2017.08.016 (2017). | spa |
dc.relation.references | Ramesh Kumar, B., Deviram, G., Mathimani, T., Duc, P. A. & Pugazhendhi, A. Microalgae as rich source of polyunsaturated fatty acids. Biocatalysis and Agricultural Biotechnology 17, 583–588, https://doi.org/10.1016/j.bcab.2019.01.017 (2019) | spa |
dc.relation.references | Iovinella, M. et al. Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic environments from Turkey. Extremophiles 22, 713–723, https://doi.org/10.1007/s00792-018-1031-x (2018). | spa |
dc.relation.references | Schönknecht, G. et al. Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote. Science 339, 1207–1210, https://doi.org/10.1126/science.1231707 (2013). | spa |
dc.relation.references | Sloth, J. K., Wiebe, M. G. & Eriksen, N. T. Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology 38, 168–175, https://doi.org/10.1016/j.enzmictec.2005.05.010 (2006). | spa |
dc.relation.references | Farrell, E. K. & Merkler, D. J. Biosynthesis, degradation and pharmacological importance of the fatty acid amides. Drug Discovery Today 13, 558–568, https://doi.org/10.1016/j.drudis.2008.02.006 (2008). | spa |
dc.relation.references | Fuchs, B., Süß, R., Teuber, K., Eibisch, M. & Schiller, J. Lipid analysis by thin-layer chromatography—A review of the current state. Journal of Chromatography A 1218, 2754–2774, https://doi.org/10.1016/j.chroma.2010.11.066 (2011). | spa |
dc.relation.references | Parsons, J. G. & Patton, S. Two-dimensional thin-layer chromatography of polar lipids from milk and mammary tissue. Journal of Lipid Research 8, 696–698 (1967). | spa |
dc.relation.references | Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 13, 783–791, https://doi. org/10.1111/j.1558-5646.1985.tb00420.x (1985). | spa |
dc.relation.references | Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874, https://doi.org/10.1093/molbev/msw054 (2016). | spa |
dc.relation.references | Srivastava, G., Nishchal, K. & Goud, V. V. Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresource Technology 242, 244–252, https://doi.org/10.1016/j.biortech.2017.03.175 (2017). | spa |
dc.relation.references | Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T. Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. International Journal of Systematic Bacteriology 49(Pt 3), 1157–1163, https://doi. org/10.1099/00207713-49-3-1157 (1999). | spa |
dc.relation.references | Toplin, J. A., Norris, T. B., Lehr, C. R., McDermott, T. R. & Castenholz, R. W. Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand. Applied and Environmental Microbiology 74, 2822–2833, https://doi.org/10.1128/aem.02741-07 (2008). | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Fatty Acids | spa |
dc.subject.keyword | bioactive compounds | spa |
dc.subject.keyword | lipids | spa |
dc.subject.lemb | Ácidos grasos | spa |
dc.subject.lemb | Compuestos bioactivos | spa |
dc.subject.lemb | Lípidos | spa |
dc.title | Production of Polyunsaturated Fatty Acids and Lipids from Autotrophic, Mixotrophic and Heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832 | spa |
dc.type.category | Apropiación Social y Circulación del Conocimiento: Edición de revista o libro de divulgación científica | spa |