A QTAIM topological analysis of the P3HT–PCBM dimer
dc.contributor.author | Rodríguez, Juan I. | spa |
dc.contributor.author | Mattab, Chérif F. | spa |
dc.contributor.author | Uribe, Emilbus A. | spa |
dc.contributor.author | Götzd, Andreas W. | spa |
dc.contributor.author | Castillo-Alvarado, F.L. | spa |
dc.contributor.author | Molina-Brito, Bertha | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2019-12-17T15:57:06Z | spa |
dc.date.available | 2019-12-17T15:57:06Z | spa |
dc.date.issued | 2015-12-12 | spa |
dc.description.abstract | tIn order to cast some light onto the nature of the chemical bonding between a 8-unit oligomer of thepoly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester(PCBM) in the two stables isomers reported recently [I. Gutiérrez-González, B. Molina-Brito, A.W. Götz,F.L. Castillo-Alvarado, J.I. Rodríguez, Chem. Phys. Lett. 612, 234 (2014)], we have performed a Bader’squantum theory of atoms in molecules (QTAIM) analysis. According to QTAIM, no covalent bonds areformed between P3HT and PCBM, and hydrogen and stacking interactions account for about 90% and 10%of the total number of bonds between P3HT and PCBM, respectively. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.1016/j.cplett.2015.11.052 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/20401 | |
dc.relation.references | G. Li, R. Zhu, Y. Yang, Nat. Photon. 6 (2012) 153. | spa |
dc.relation.references | S.S. Sun, N.S. Sariciftci (Eds.), Organic Photovoltaics. Mechanisms, Materials,and Devices, Taylor & Francis Group LLC, Florida, 2005. | spa |
dc.relation.references | H. Hoppe, N.S. Sariciftci, in: S.S. Sun, N.S. Sariciftci (Eds.), Organic Photovoltaics.Mechanisms, Materials and Devices, Taylor & Francis Group LLC, Florida, 2005. | spa |
dc.relation.references | C. Waldauf, P. Schilinsky, J. Hauch, C.J. Brabec, Thin Solid Films 451 (2004) 503. | spa |
dc.relation.references | A.F. Hepp, S.G. Bailey, R.P. Raffaelle, in: S.S. Sun, N.S. Sariciftci (Eds.), OrganicPhotovoltaics. Mechanisms, Materials and Devices, Taylor & Francis Group LLC,Florida, 2005. | spa |
dc.relation.references | M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J.Brabec, Adv. Mater. 18 (2006) 789. | spa |
dc.relation.references | J. Brédas, J.E. Norton, J. Cornil, V. Coropceanu, Acc. Chem. Res. 42 (2009)1691. | spa |
dc.relation.references | L.J.K. Koster, V.D. Mihailetchi, P.W.M. Blom, App. Phys. Lett. 88 (2006) 093511. | spa |
dc.relation.references | D.L. Cheung, A. Troisi, J. Phys. Chem. C 114 (2010) 20479. | spa |
dc.relation.references | C.F.N. Marchiori, M. Koehler, Syn. Met. 160 (2010) 643. | spa |
dc.relation.references | J.J.M. Halls, J. Cornil, D.A. dos Santos, R. Silbey, D.H. Hwang, A.B. Holmes, J.L.Brédas, R.H. Friend, Phys. Rev. B 60 (1999) 5721. | spa |
dc.relation.references | S. Cook, R. Katoh, A. Furube, J. Phys. Chem. C 113 (2009) 2547. | spa |
dc.relation.references | T. Drori, C.-X. Sheng, A. Ndobe, S. Singh, J. Holt, Z.V. Vardeny, Phys. Rev. Lett.101 (2008) 037401. | spa |
dc.relation.references | E. Lioudakis, I. Alexandrou, A. Othonos, Nanoscale Res. Lett. 4 (2009) 1475. | spa |
dc.relation.references | G. Grancini, D. Polli, D. Fazzi, J. Cabanillas-Gonzalez, G. Cerullo, G. Lanzani, J.Phys. Chem. Lett. 2 (2011) 1099. | spa |
dc.relation.references | P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns,C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, J.V. Manca, Sol. Energy Mater.Sol. Cells 90 (2006) 2150. | spa |
dc.relation.references | Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.C. Bradley,M. Giles, I. McCulloch, C. Ha, M. Ree, Nature 5 (2006) 197. | spa |
dc.relation.references | B. Peng, Xia Guo, Y.C. Pan, Y. Li, J. Phys. D: Appl. Phys. 44 (2011) 365101. | spa |
dc.relation.references | E.D. Gomez, K.P. Barteu, H. Wang, M.F. Toney, Y. Loo, Chem. Commun. 47 (2011)436. | spa |
dc.relation.references | E. Bundgaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 91 (2007) 954. | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Photovoltaic cells | spa |
dc.subject.keyword | Weak bonding interactions | spa |
dc.subject.keyword | Hydrogen bonding | spa |
dc.subject.keyword | Topological analysis of the electron density | spa |
dc.subject.keyword | Bader’s quantum theory of atoms inmolecule (QTAIM) | spa |
dc.title | A QTAIM topological analysis of the P3HT–PCBM dimer | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- A QTAIM topological analysis of the P3HT–PCBM dimer.pdf
- Tamaño:
- 1.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo SCOPUS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: