Comparison of algorithms for reliability-based structural optimization
dc.contributor.author | Cortés-Ramos, Henry Octavio | spa |
dc.contributor.author | Camacho-López, Carlos Julio | spa |
dc.contributor.author | Calvo Ocampo, Rodrigo Andrés | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2019-07-05T20:56:28Z | spa |
dc.date.available | 2019-07-05T20:56:28Z | spa |
dc.date.issued | 2018-01-03 | spa |
dc.description | El diseño de estructuras confiables requiere de herramientas robustas que permitan analizar el comportamiento del sistema sometido a variabilidad en su resistencia y cargas aplicadas. Para esto, se disponen de diversas formulaciones y algoritmos computacionales que permiten modelar el comportamiento estructural bajo incertidumbres. Bajo estos requerimientos, la metodología de diseño óptimo más popular y confiable es la optimización basada en confiabilidad (RBO, reliability based optimization), que puede implementarse a través de la combinación de modelos matemáticos o computacionales de alta fidelidad, e.g. modelos de elementos finitos, métodos eficientes y precisos de estimación de la confiabilidad, y algoritmos eficientes y eficaces de optimización en ingeniería. La mayoría de aplicaciones de RBO para optimización estructural cuenta con los últimos desarrollos de técnicas computacionales eficientes para simulación y cálculo de confiabilidad, sin embargo, a pesar de que existe una gran variedad de métodos de optimización, generalmente no realizan una selección del algoritmo de optimización más apropiado para cada aplicación. En este contexto, la contribución principal de este artículo es la realización de un estudio comparativo del desempeño computacional de algoritmos de optimización aplicados en optimización estructural por RBO. El estudio realizado comparó el desempeño numérico de algoritmos de optimización en tres problemas. Los algoritmos comparados corresponden a algoritmos basados en derivadas, algoritmos de búsqueda directa, y algoritmos bioinspirados; incluyendo los algoritmos más representativos de cada categoría. Los resultados del estudio comparativo señalan ventajas y desventajas del uso de los diferentes tipos de algoritmos y permiten concluir sobre los criterios que deben considerarse para la selección de un algoritmo que favorezca el rendimiento computacional. | spa |
dc.description.abstract | The design of reliable structures requires robust tools that allow the analysis of the behavior of the system subject to variability in its resistance and applied loads. For this, there are several formulations and computational algorithms that enable to model the structural behavior under uncertainties. Under these requirements, the most popular and reliable optimum design methodology is the reliability based optimization (RBO), which should be implemented through the combination of high fidelity mathematical or computational models, e.g. finite element models, efficient and accurate reliability estimation methods, and efficient and effective engineering optimization algorithms. Most RBO applications for structural optimization has the latest developments in efficient computational techniques for simulation and reliability calculations, however, although a variety of optimization methods exist, they generally do not perform a selection of the optimization algorithm more appropriate for each application. In this context, the main contribution of this article is the performing of a comparative study of the computational performance of optimization algorithms applied in structural optimization by RBO. The study compared the numerical performance of optimization algorithms in three problems. Compared algorithms correspond to derivative based algorithms, direct search algorithms, and bioinspired algorithms; including the most representative algorithms of each category. The results of the comparative study point out advantages and disadvantages of the use of the different types of algorithms and allow to conclude on the criteria that must be considered for the choice of an algorithm that favors the computational performance. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Cortés-Ramos, H. O., Camacho-López, C. J., & Calvo Ocampo, R. A. (2018). Comparison of algorithms for reliability-based structural optimization. Bogotá: doi:10.23967/j.rimni.2017.7.003 | spa |
dc.identifier.doi | https://doi.org/10.23967/j.rimni.2017.7.003 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/17477 | |
dc.relation.references | R. Reuven Y., Simulation and the Monte Carlo method, 1st ed., John Wiley & Sons., New York, 1981. | spa |
dc.relation.references | A.M. Hasofer, N.C. Lind, An Exact and Invariant First-order Reliability Format, J. Eng. Mech. Div. (1973) 111–121. | spa |
dc.relation.references | A. Der Kiureghian, H.-Z. Lin, S.-J. Hwang, Second-Order Reliability Approximations, J. Eng. Mech. 113 (1987) 1208–1225. doi:10.1061/(ASCE)0733-9399(1987)113:8(1208). | spa |
dc.relation.references | V. Keshavarzzadeh, H. Meidani, D.A. Tortorelli, Gradient based design optimization under uncertainty via stochastic expansion methods, Comput. Methods Appl. Mech. Eng. 306 (2016) 47–76. doi:10.1016/j.cma.2016.03.046. | spa |
dc.relation.references | V. Dubourg, B. Sudret, J.M. Bourinet, Reliability-based design optimization using kriging surrogates and subset simulation, Struct. Multidiscip. Optim. 44 (2011) 673–690. doi:10.1007/s00158-011-0653-8. | spa |
dc.relation.references | B. Sudret, Meta-models for structural reliability and uncertainty quantification, Fifth Asian-Pacific Symp. Struct. Reliab. Its Appl. (2012) 53–76. | spa |
dc.relation.references | Y. Aoues, A. Chateauneuf, Benchmark study of numerical methods for reliability-based design optimization, Struct. Multidiscip. Optim. 41 (2009) 277–294. doi:10.1007/s00158-009- 0412-2. | spa |
dc.relation.references | M.A. Valdebenito, G.I. Schuëller, A survey on approaches for reliability-based optimization, Struct. Multidiscip. Optim. 42 (2010) 645–663. doi:10.1007/s00158-010-0518-6. | spa |
dc.relation.references | O. Ditlevsen, P. Bjerager, Methods of Structural Systems Reliability, Struct. Saf. 3 (1986) 195–229. doi:10.1016/0167-4730(86)90004-4. | spa |
dc.relation.references | S.-K. Choi, R.V.. Grandhi, R.A. Canfield, Reliability-based Structural Design, Springer, London, 2007. | spa |
dc.relation.references | C.A. Cornell, A probability-based structural code, J. Proc. 66 (1969) 974–985. | spa |
dc.relation.references | E. Nikolaidis, R. Burdisso, Reliability based optimization: A safety index approach, Comput. Struct. 28 (1988) 781–788. doi:10.1016/0045-7949(88)90418-X. | spa |
dc.relation.references | A.M. Hasofer, N.C. Lind, Exact and Invariant Second-Moment Code Format, J. Eng. Mech. Div. 100 (1974) 111–121. | spa |
dc.relation.references | R.H. Byrd, J.C. Gilbert, J. Nocedal, A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming, Math. Program. Ser. B. 89 (2000) 149–185. doi:10.1007/PL00011391. | spa |
dc.relation.references | R. Hooke, T.A. Jeeves, Direct Search Solution of Numerical and Statistical Problems, J. ACM. 8 (1961) 212–229. doi:10.1145/321062.321069. | spa |
dc.relation.references | T.G. Kolda, R.M. Lewis, V. Torczon, A generating set direct search augmented Lagrangian algorithm for optimization with a combination of general and linear constraints, Tech. Rep. SAND2006-5315, Sandia Natl. Lab. (2006) 44. | spa |
dc.relation.references | D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed., Addison-Wesley Publishing Company, New York, 1989. | spa |
dc.relation.references | L.L. Corso, H.M. Gomes, G.P. Mezzomo, A. Molter, Otimização baseada em confiabilidade para uma célula de carga multiaxial utilizando algoritmos genéticos, Rev. int. métodos numér. cálc. diseño ing. 32 (2016) 221–229. doi:10.1016/j.rimni.2015.07.002. | spa |
dc.relation.references | E.E. Kostandyan, J.D. Sorensen, Reliability assessment of IGBT modules modeled as systems with correlated components, Proc. - Annu. Reliab. Maintainab. Symp. (2013) 1–6. doi:10.1109/RAMS.2013.6517663. | spa |
dc.relation.references | Y. Tsompanakis, N.D. Lagaros, M. Papadrakakis, Structural design optimization considering uncertainties (Structures and Infrastructures 1), Taylor & Francis, London, 2008. | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Structural optimization | spa |
dc.subject.keyword | Reability | spa |
dc.subject.keyword | Optimization methods | spa |
dc.subject.keyword | Reability index | spa |
dc.subject.keyword | Numerical efficiency | spa |
dc.title | Comparison of algorithms for reliability-based structural optimization | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Comparison of algorithms for reliability-based structural optimization.pdf
- Tamaño:
- 2.46 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo SCOPUS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: