Wear resistance of vanadium-niobium carbide layers grown via TRD

dc.contributor.authorCastillejo-Nieto, Fabio Enriquespa
dc.contributor.authorOlaya-Florez, Jhon Jairospa
dc.contributor.authorAlfonso, José Edgarspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-12-17T15:16:30Zspa
dc.date.available2019-12-17T15:16:30Zspa
dc.date.issued2015-09-01spa
dc.descriptionRecubrimientos mixtos de carburos de niobio - vanadio se fabricaron utilizando el proceso de difusión termo-reactiva (TRD) a fin de mejorar la resistencia al desgaste en aceros para herramientas. Los recubrimientos fueron depositados en un baño de bórax con ferroniobio, ferrovanadio y aluminio, con temperaturas de depósito de 1223, 1293 y 1363 K para 2, 3, 4 y 5 h. Los recubrimientos producidos se caracterizaron con microscopía electrónica de barrido (SEM), difracción de rayos X (DRX) y espectroscopia de dispersión de energía (EDS). Se estudiaron las tasas de crecimiento de los recubrimientos, y se construyó un modelo de la cinética del espesor de la capa como una función del tiempo y la temperatura del proceso. La dureza y el coeficiente de fricción (COF) de los recubrimientos se midieron a través de nanoindentación y bola sobre disco, respectivamente. Las capas de carburo presentaron un espesor homogéneo alcanzando durezas de 37,63 GPa que está cerca de valores obtenidos en materiales súper-duros, y el COF presento valores cercanos de 0,3 para los aceros recubiertos.spa
dc.description.abstractNb-V complex carbide coatings were produced on AISI D2 steel substrates using the thermo-reactive diffusion (TRD) process in order to improve the surface hardness and wear resistance of this tool steel. The carbide coating treatment was performed using molten borax with added ferroniobium, ferrovanadium, and aluminum at temperatures of 1223, 1293, and 1363 K for 2, 3, 4, and 5 h. The coating layers were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The growth rates of the coatings were studied, and a kinetic model of the layer thickness was constructed as a function of the time and temperature treatment. The hardness and friction coefficient (COF) of the coatings was measured through nanoindentation and pin on disk test respectively. The carbide layers had a homogeneous thickness and a hardness of 37.63 GPa, which is close to values obtained in superhard materials, and the COF was in the range of 0,3 for the coated steels.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.15446/dyna.v82n193.46657spa
dc.identifier.urihttp://hdl.handle.net/11634/20369
dc.relation.referencesMarulanda, D. and Olaya, J.J., Unbalanced magnetron sputtering for producing corrosion resistance multilayer coatings. DYNA, 79 (171), pp. 74-79, 2012.spa
dc.relation.referencesSu, Y.L. and Kao, W.H. Optimum multilayer TiN–TiCN coatings for wear resistance and actual application. Wear, 223, pp. 119-130, 1998. DOI: 10.1016/S0043-1648(98)00276-2spa
dc.relation.referencesCastillejo, F.E., Marulanda, D., Rodriguez, O. and Olaya, J.J., Electrical furnace for producing carbide coatings using the thermoreactive deposition/diffusion technique. DYNA, 78 (170), pp. 192-197, 2011.spa
dc.relation.referencesArai, T. and Harper, S., ASM Handbook, 4 - Heat Treating. OH, USA: ASM International, Materials Park, 1991, 448 P.spa
dc.relation.referencesOliveira, C.K.N., Muñoz Riofano, R.M. and Castiletti, L.C., Evaluation of hard coatings obtained on AISI D2 steel by thermo-reactive deposition treatment. Surface and Coatings Technology, 201, pp. 1880-1885, 2006. DOI: 10.1016/j.surfcoat.2006.03.036spa
dc.relation.referencesArai, T., Fujita, H., Sugimoto, Y. and Ohta, Y., Diffusion carbide coatings formed in molten Borax systems. Journal of Materials Engineering, 9 (2), pp. 183-189, 1987. DOI: 10.1007/BF02833709spa
dc.relation.referencesChild H.C., Plumb, S.A. and McDermott, J.J. Proc. Heat Treatment'84, The Metals Society, 310, 1984.spa
dc.relation.referencesSinha. A.K., ASM Handbook, 4 - Heat Treating. OH, USA: ASM International, Materials Park, 1991. pp. 437 P.spa
dc.relation.referencesSen, S., Ozbek, I., Sen, U. and Bindal, C., Mechanical behavior of borides formed on borided cold work tool steel. Surface and Coatings Technology, 135, pp. 173-177, 2001. DOI: 10.1016/S0257-8972(00)01064-1spa
dc.relation.referencesSen, U., Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique. Materials Chemistry and Physics, 86 (1), pp. 189-194, 2004. DOI: 10.1016/j.matchemphys.2004.03.002spa
dc.relation.referencesSen, S., Sen, U. and Bindal, C., The growth kinetics of borides formed on boronized AISI 4140 steel. Vacuum, 77 (2), pp. 195-202, 2005. DOI: 10.1016/j.vacuum.2004.09.005spa
dc.relation.referencesSen, S., A study on kinetics of CrxC-coated high-chromium steel by thermoreactive diffusion technique. Vacuum, 79 (1-2), pp. 63-70, 2005. DOI: 10.1016/j.vacuum.2005.01.009spa
dc.relation.referencesTavakoli, H. and Mousavi Khoie, S.M., An electrochemical study of the corrosion resistance of boride coating obtained by thermo-reactive diffusion. Material Chemistry and Physics, 124 (2-3), pp. 1134-1138, 2010. DOI: 10.1016/j.matchemphys.2010.08.047spa
dc.relation.referencesCastillejo, F.E., Marulanda, D.M., Olaya, J.J. and Alfonso, J.E., Wear and corrosion resistance of niobium–chromium carbide coatings on AISI D2 produced through TRD. Surface & Coatings Technology, 254, pp. 104-111, 2014. DOI: 10.1016/j.surfcoat.2014.05.069spa
dc.relation.referencesArai, T., Komatsu, N. and Mizutani, M., Diffusion layers on steel surfaces immersed in fused borax baths containing various kinds of additives. Journal of the Japan Institute of Metals, 39, pp. 247-255, 1975.spa
dc.relation.referencesCastillejo, F., Marulanda, D., Olaya, J.J. and Rodriguez, O., Electrical furnace for producing carbide coatings using the Thermoreactive deposition/diffusion technique. DYNA, 78 (170), pp. 192-197, 2011.spa
dc.relation.referencesVillars, P. and Calvert, L.D., Pearson`s Handbook of Crystallographic Phases. USA: ASM international, 1991.spa
dc.relation.referencesWorrell, W.L. and Chipman, J., The free energies of formation of the vanadium, niobium, and tantalum carbides. Journal of Physical Chemistry, 68 (4), pp. 860-866, 1964. DOI: 10.1021/j100786a027spa
dc.relation.referencesPaunovic, M. and Schlesinger, M., Fundamentals of electrochemical deposition, New York, USA: John Wiley & Sons, Inc., 1999.spa
dc.relation.referencesOliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7 (6), pp 1564- 1583, 1992. DOI: 10.1557/JMR.1992.1564spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordThermo Reactive Diffusionspa
dc.subject.keywordNiobium-Vanadium Carbidespa
dc.subject.keywordHardnessspa
dc.subject.keywordWearspa
dc.subject.proposalDifusión Termo-Reactivaspa
dc.subject.proposalCarburo de Niobio-Vanadiospa
dc.subject.proposalDurezaspa
dc.subject.proposalDesgastespa
dc.titleWear resistance of vanadium-niobium carbide layers grown via TRDspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wear resistance of vanadium-niobium carbide layers grown via TRD.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
Description:
Artículo SCOPUS

License bundle

Now showing 1 - 1 of 1
Thumbnail USTA
Name:
license.txt
Size:
807 B
Format:
Item-specific license agreed upon to submission
Description: