Power usage reduction of humanoid standing process using Q-Learning

Cargando...
Miniatura

Fecha

2016-01-29

Director

Enlace al recurso

ORCID

Google Scholar

Cvlac

gruplac

Título de la revista

ISSN de la revista

Título del volumen

Editor

Compartir

Documentos PDF
Cargando...
Miniatura

Resumen

Abstract

An important area of research in humanoid robots is energy consumption, as it limits autonomy, and can harm task performance. This work focuses on power aware motion planning. Its principal aim is to find joint trajectories to allow for a humanoid robot to go from crouch to stand position while minimizing power consumption. Q-Learning (QL) is used to search for optimal joint paths subject to angular position and torque restrictions. A planar model of the humanoid is used, which interacts with QL during a simulated offline learning phase. The best joint trajectories found during learning are then executed by a physical humanoid robot, the Aldebaran NAO. Position, velocity, acceleration, and current of the humanoid system are measured to evaluate energy, mechanical power, and Center of Mass (CoM) in order to estimate the performance of the new trajectory which yield a considerable reduction in power consumption.

Idioma

Palabras clave

Citación

Licencia Creative Commons

Atribución-NoComercial-CompartirIgual 2.5 Colombia