Power usage reduction of humanoid standing process using Q-Learning
dc.contributor.author | Elibol, Ercan | spa |
dc.contributor.author | Calderón, Juan | spa |
dc.contributor.author | Llofriu, Martin | spa |
dc.contributor.author | Quintero, Carlos | spa |
dc.contributor.author | Moreno, Wilfrido | spa |
dc.contributor.author | Weitzenfeld, Alfredo | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-01-16T22:10:29Z | spa |
dc.date.available | 2020-01-16T22:10:29Z | spa |
dc.date.issued | 2016-01-29 | spa |
dc.description.abstract | An important area of research in humanoid robots is energy consumption, as it limits autonomy, and can harm task performance. This work focuses on power aware motion planning. Its principal aim is to find joint trajectories to allow for a humanoid robot to go from crouch to stand position while minimizing power consumption. Q-Learning (QL) is used to search for optimal joint paths subject to angular position and torque restrictions. A planar model of the humanoid is used, which interacts with QL during a simulated offline learning phase. The best joint trajectories found during learning are then executed by a physical humanoid robot, the Aldebaran NAO. Position, velocity, acceleration, and current of the humanoid system are measured to evaluate energy, mechanical power, and Center of Mass (CoM) in order to estimate the performance of the new trajectory which yield a considerable reduction in power consumption. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.1007/978-3-319-29339-4 21 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/20597 | |
dc.relation.references | Gonzalez-Fierro, M., Balaguer, C., Swann, N., Nanayakkara, T.: A humanoid robot standing up through learning from demonstration using a multimodal reward function. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 74–79. IEEE (2013) | spa |
dc.relation.references | Mistry, M., Murai, A., Yamane, K., Hodgins, J.: Sit-to-stand task on a humanoid robot from human demonstration. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 218–223. IEEE (2010) | spa |
dc.relation.references | Morimoto, J., Doya, K.: Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning. Robot. Auton. Syst. 36(1), 37–51 (2001) | spa |
dc.relation.references | Yamasakitt, F., Endot, K., Kitanots, H., Asada, M.: Acquisition of humanoid walking motion using genetic algorithm - considering characteristics of servo modules. In: Proceedings of the 2002 IEEE, International Conference on Robotics 8 Automation, Washington, DC (2002) | spa |
dc.relation.references | Lei, X-.S., Pan, J., Su, J.-.B.: Humanoid Robot Locomotion. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou (2005) | spa |
dc.relation.references | Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32, 1238–1274 (2013) | spa |
dc.relation.references | Tedrake, R., Zhang, T.W., Seung, H.S.: Learning to walk in 20 minutes. In: Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems, vol. 95585 (2005) | spa |
dc.relation.references | Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPGbased biped locomotion with a policy gradient method: application to a humanoid robot. Int. J. Robot. Res. 27(2), 213–228 (2008) | spa |
dc.relation.references | Geng, T., Porr, B., Wrgtter, F.: Fast biped walking with a reflexive controller and real-time policy searching. Adv. Neural Inf. Process. Syst. 18, 427–434 (2005) | spa |
dc.relation.references | Whitman, E.C., Atkeson, C.G.: Control of instantaneously coupled systems applied to humanoid walking. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 210–217 (2010) | spa |
dc.relation.references | Hester, T., Quinlan, M., Stone, P.: Generalized Model Learning for Reinforcement Learning on a Humanoid Robot. In: International Conference on Robotics and Automation (2010) | spa |
dc.relation.references | Kuindersma, S., Grupen, R., Barto, A.: Learning dynamic arm motions for postural recovery. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 7–12 ( 2011) | spa |
dc.relation.references | Calderon, J.M., Elibol, E., Moreno, W., Weitzenfeld, A.: Current usage reduction through stiffness control in humanoid robot. In: 8th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots (2013) | spa |
dc.relation.references | Ljung, L.: System Identication - Theory for the User, 2nd edn. Prentice-Hall, Upper Saddle River (1999) | spa |
dc.relation.references | Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998) | spa |
dc.relation.references | Silva, F.M., Machado, J.A.T.: Energy analysis during biped walking. In: Proceedings IEEE International Conference Robotics and Automation, vol. 1–4, pp. 59–64 (1999) | spa |
dc.relation.references | Calderon, J., Weitzenfeld, A., Elibol, E.: Optimizing energy usage through variable joint stiffness control during humanoid robot walking. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS, vol. 8371, pp. 492–503. Springer, Heidelberg (2014) | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Humanoid | spa |
dc.subject.keyword | Dynamic modeling | spa |
dc.subject.keyword | Energy analysis | spa |
dc.subject.keyword | Optimization | spa |
dc.subject.keyword | Q-learning | spa |
dc.title | Power usage reduction of humanoid standing process using Q-Learning | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Power usage reduction of humanoid standing process using Q-Learning.pdf
- Tamaño:
- 795.11 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo SCOPUS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: