Desarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar

dc.contributor.advisorMateus Rojas, Armando
dc.contributor.authorPlazas Pirabán, Lina Alejandra
dc.contributor.authorBetancur Sanchez, Bryan Steven
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000680630spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=1az5o_IAAAAJ&hl=esspa
dc.contributor.orcidhttps://orcid.org/0000-0002-2399-4859spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2021-09-17T15:04:03Z
dc.date.available2021-09-17T15:04:03Z
dc.date.issued2021-09-16
dc.descriptionEste documento presenta el desarrollo de un algoritmo de re-identificación multimodal para mejorar la interacción Humano-Robot en el ámbito de asistencia doméstica. De esta manera, se integraron diferentes estrategias de reconocimiento de personas como lo son reconocimiento facial, por voz y por características soft-biométricas (color de cabello, ojos y piel). Para esto, en primer lugar se realizó una consulta bibliográfica donde se eligieron posibles algoritmos a utilizar; luego se implementaron y se realizaron diferentes pruebas con el fin de elegir los algoritmos que presentaban mejores resultados por cada estrategia de re-identificación, después se integraron en un único desarrollo basado en regresión lineal múltiple el cual tuvo un porcentaje de acierto del 97.4%. De igual manera, se implementó todo el sistema en ROS (sistema operativo robótico) y se realizaron pruebas donde se evaluó si el algoritmo reconocía órdenes básicas personalizadas.spa
dc.description.abstractThis document presents the development of a multimodal re-identification algorithm to improve Human-Robot interaction in the home care setting. In this way, different people recognition strategies were integrated, such as facial recognition, voice recognition and soft-biometric characteristics (hair, eye and skin color). For this, in the first place a bibliographic consultation was carried out where possible algorithms to be used were chosen; Later, different tests were implemented and carried out in order to choose the algorithms that presented the best results for each re-identification strategy, then they were integrated into a single development based on multiple linear regression, which had a 97.4% success rate. Similarly, the entire system was implemented in ROS (robotic operating system) and tests were carried out where it was evaluated if the algorithm recognized personalized basic orders.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationPlazas Pirabán, L.A. & Betancur Sanchez, B.S. (2021) Desarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar [Trabajo de grado pregrado Ingeniería Electrónica] Repositorio Institucionalspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/35563
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesAlpaydin E. Introduction to machine learning. MIT press; 2020.spa
dc.relation.referencesKapusta A, Erickson Z, Clever HM, et al. Personalized collaborative plans for robot-assisted dressing via optimization and simulation. Autonomous Robots. 2019;43(8):2183-2207.spa
dc.relation.referencesZhang DD. Automated biometrics: Technologies and systems. Vol 7. Springer Science & Business Media; 2013.spa
dc.relation.referencesAlejandra MD. Re-identificaci´on de personas a trav´es de sus caracter´ısticas soft-biom´etricas en un entorno multi-c´amara de video vigilancia. Ingenier´ıa, investigaci´on y tecnolog´ıa. 2016;17(2):257-27spa
dc.relation.referencesNorvig P, Russell S. Inteligencia artificial. Editora Campus. 2004;20.spa
dc.relation.referencesCong DT, Khoudour L, Achard C, Meurie C, Lezoray O. People re identification by spectral classification of silhouettes. Signal Process. 2010;90(8):2362-2374.spa
dc.relation.referencesSalter T, Werry I, Michaud F. Going into the wild in child–robot interaction studies: Issues in social robotic development. Intelligent Service Robotics. 2008;1(2):93-108.spa
dc.relation.referencesWechsler H, Phillips JP, Bruce V, Soulie FF, Huang TS. Face recognition: From theory to applications. Vol 163. Springer Science & Business Media; 2012.spa
dc.relation.referencesZeng J, Zeng J, Qiu X. Deep learning based forensic face verification in videos. . 2017:77-80.spa
dc.relation.referencesRashid RA, Mahalin NH, Sarijari MA, Aziz AAA. Security system using biometric technology: Design and implementation of voice recognition system (VRS). . 2008:898-902.spa
dc.relation.referenceseinrich C, Volkhardt M, Gross H. Appearance-based 3d upper body pose estimation and person re-identification on mobile robots. . 2013:4384-4390.spa
dc.relation.referencesBarea R, Bergasa LM, L´opez E, Escudero MS, Leon C. Face recognition for social interaction with a personal robotic assistant. . 2005;1:382-385.spa
dc.relation.referencesHsu C, Lin C, Su W, Cheung G. Sigan: Siamese generative adversarial network for identity-preserving face hallucination. IEEE Trans Image Process. 2019;28(12):6225-6236.spa
dc.relation.referencesD’Auria D, Persia F, Bettini F, Helmer S, Siciliano B. Sarri: A smart rapiro robot integrating a framework for automatic high-level surveillance event detection. . 2018:238-241spa
dc.relation.referencesMatamoros M, Rascon C, Hart J, et al. RoboCup@Home rules & regulations.spa
dc.relation.referencesKim D, Yoon H, Chi S, Cho Y. Face identification for human robot interaction: Intelligent security system for multi-user working environment on PC. . 2006:617-622.spa
dc.relation.referencesAkbulut Y, S¸eng¨ur A, Budak U, Ekici S. Deep learning based face ¨ liveness detection in videos. . 2017:1-4.spa
dc.relation.referencesBae H, Lee H, Lee S. Voice recognition based on adaptive MFCC and deep learning. . 2016:1542-1546.spa
dc.relation.referencesChakraborty K, Talele A, Upadhya S. Voice recognition using MFCC algorithm. International Journal of Innovative Research in Advanced Engineering (IJIRAE). 2014;1(10):2349-2163.spa
dc.relation.referencesFang X, Gu W, Huang C. A method of skin color identification based on color classification. . 2011;4:2355-2358.spa
dc.relation.referencesSong A, Hu Q, Ding X, Di X, Song Z. Similar face recognition using the IE-CNN model. IEEE Access. 2020;8:45244-45253.spa
dc.relation.referencesSinith MS, Salim A, Sankar KG, Narayanan KS, Soman V. A novel method for text-independent speaker identification using mfcc and gmm. . 2010:292-296.spa
dc.relation.referencesPo lap D, Wo´zniak M. Voice recognition by neuro-heuristic method. Tsinghua Science and Technology. 2018;24(1):9-17.spa
dc.relation.referencesChristensen HI, Batzinger T, Bekris K, et al. A roadmap for us robotics: From internet to robotics. Computing Community Consortium. 2009;44.spa
dc.relation.referencesSiciliano B, Caccavale F, Zwicker E, et al. Euroc-the challenge initiative for european robotics. . 2014:1-7.spa
dc.relation.referencesTome P, Fierrez J, Vera-Rodriguez R, Nixon MS. Soft biometrics and their application in person recognition at a distance. IEEE Transactions on information forensics and security. 2014;9(3):464-475.spa
dc.relation.referencesShan C, Gong S, McOwan PW. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vision Comput. 2009;27(6):803-816.spa
dc.relation.referencesEphraim T, Himmelman T, Siddiqi K. Real-time viola-jones face detection in a web browser. . 2009:321-328.spa
dc.relation.referencesSu´arez EJC. Tutorial sobre máquinas de vectores soporte (sVM). Tutorial sobre Máquinas de Vectores Soporte (SVM). 2014:1-12spa
dc.relation.referencesChandrasekhar AM, Raghuveer K. An effective technique for intrusion detection using neuro -fuzzy and radial svm classifier. In: Computer networks & communications (NetCom). Springer; 2013:499-507spa
dc.relation.referencesOlabe XB. Redes neuronales artificiales y sus aplicaciones. Publicaciones de la Escuela de Ingenieros. 1998.spa
dc.relation.referencesGazalba I, Reza NGI. Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. . 2017:294-298.spa
dc.relation.referencesMuda L, Begam M, Elamvazuthi I. Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv preprint arXiv:1003.4083. 2010.spa
dc.relation.referencesEskidere O, G¨urhanlı A. Voice disorder classification based on ¨ multitaper mel frequency cepstral coefficients features. Computational and mathematical methods in medicine. 2015;2015.spa
dc.relation.referencesGupta A, Gupta H. Applications of MFCC and vector quantization in speaker recognition. . 2013:170-173spa
dc.relation.referencesHuang T, Peng H, Zhang K. Model selection for gaussian mixture models. Statistica Sinica. 2017:147-169.spa
dc.relation.referencesBuza E, Akagic A, Omanovic S. Skin detection based on image color segmentation with histogram and k-means clustering. . 2017:1181-1186.spa
dc.relation.referencesHe K, Gkioxari G, Doll´ar P, Girshick R. Mask r-cnn. . 2017:2961-2969.spa
dc.relation.referencesZhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett. 2016;23(10):1499-1503.spa
dc.relation.referencesAsafu-Adjei JK, Betensky RA. A pairwise na¨ıve bayes approach to bayesian classification. Int J Pat Recognit Artif Intell. 2015;29(07):1550023.spa
dc.relation.referencesJang E, Gu S, Poole B. Categorical reparameterization with gumbel softmax. arXiv preprint arXiv:1611.01144. 201spa
dc.relation.referencesFurui S, Kikuchi T, Shinnaka Y, Hori C. Speech-to-text and speech to-speech summarization of spontaneous speech. IEEE Transactions on Speech and Audio Processing. 2004;12(4):401-408.spa
dc.relation.referencesROS.org. https://wiki.ros.org/.spa
dc.relation.referencesRahmad C, Asmara RA, Putra D, Dharma I, Darmono H, Muhiqqin I. Comparison of viola-jones haar cascade classifier and histogram of oriented gradients (HOG) for face detection. . 2020;732(1):012038.spa
dc.relation.referencesShinwari AR, Jalali Balooch A, Alariki AA, Abduljalil Abdulhak S. A comparative study of face recognition algorithms under facial expression and illumination. ICACT. Feb 2019:390-394. https://ieeexplore.ieee.org/document/8702002. doi: 10.23919/ICACT.2019.8702002.spa
dc.relation.referencesWeng Z, Li L, Guo D. Speaker recognition using weighted dynamic MFCC based on GMM. . 2010:285-288.spa
dc.relation.referencesShahin I, Nassif AB, Hamsa S. Novel cascaded gaussian mixture model-deep neural network classifier for speaker identification in emotional talking environments. Neural Computing and Applications. 2020;32(7):2575-2587.spa
dc.relation.referencesKumari TJ, Jayanna HS. Comparison of LPCC and MFCC features and GMM and GMM-UBM modeling for limited data speaker verification. . 2014:1-6.spa
dc.relation.referencesThakker M, Vyas S, Ved P, Therese SS. Speaker identification in a multi-speaker environment. In: Information and communication technology for sustainable development. Springer; 2018:239-244.spa
dc.relation.referencesAmante R, S, Tingzon I. Speaker recognition using mel frequency cepstral coefficients with spectral subband centroids features. .spa
dc.relation.referencesReynolds DA, Rose RC. Robust text-independent speaker identification using gaussian mixture speaker models. IEEE transactions on speech and audio processing. 1995;3(1):72-83.spa
dc.relation.referencesRozario B, Thomas A, Mathew D. Performance comparison of phoneme modeling using MFCC and IHCC features with various optimization algorithms for neural network architectures. . 2019:240- 245spa
dc.relation.referencesKamruzzaman SM, Karim A, Islam M, Haque M. Speaker identification using mfcc-domain support vector machine. arXiv preprint arXiv:1009.4972. 2010.spa
dc.relation.referencesMansour A, Lachiri Z. SVM based emotional speaker recognition using MFCC-SDC features. International Journal of Advanced Computer Science and Applications. 2017;8(4):538-544.spa
dc.relation.referencesDi Nuovo A, Conti D, Trubia G, Buono S, Di Nuovo S. Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics. 2018;7(2):25.spa
dc.relation.referencesClearpath Robotics. Husky UGV - outdoor field research robot by clearpath. https://clearpathrobotics.com/husky-unmanned ground vehicle-robot/.spa
dc.relation.referencesROS Wiki. rviz. http://wiki.ros.org/rvizspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordFace recognitionspa
dc.subject.keywordVoice recognitionspa
dc.subject.keywordSoft-biometric characteristicsspa
dc.subject.lembInteligencia artificialspa
dc.subject.lembDeep learningspa
dc.subject.lembAlgoritmo multimodalspa
dc.subject.proposalReconocimiento rostrospa
dc.subject.proposalReconocimiento vozspa
dc.subject.proposalCaracterísticas soft-biométricasspa
dc.titleDesarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiarspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2021bryanbetancur.pdf
Tamaño:
11.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento final
Thumbnail USTA
Nombre:
cartaderechosautor.pdf
Tamaño:
968.99 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta derechos de autor
Thumbnail USTA
Nombre:
cartaaprobacionfacultad.pdf
Tamaño:
225.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: