Desarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar
dc.contributor.advisor | Mateus Rojas, Armando | |
dc.contributor.author | Plazas Pirabán, Lina Alejandra | |
dc.contributor.author | Betancur Sanchez, Bryan Steven | |
dc.contributor.corporatename | Universidad Santo Tomás | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000680630 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=1az5o_IAAAAJ&hl=es | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-2399-4859 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2021-09-17T15:04:03Z | |
dc.date.available | 2021-09-17T15:04:03Z | |
dc.date.issued | 2021-09-16 | |
dc.description | Este documento presenta el desarrollo de un algoritmo de re-identificación multimodal para mejorar la interacción Humano-Robot en el ámbito de asistencia doméstica. De esta manera, se integraron diferentes estrategias de reconocimiento de personas como lo son reconocimiento facial, por voz y por características soft-biométricas (color de cabello, ojos y piel). Para esto, en primer lugar se realizó una consulta bibliográfica donde se eligieron posibles algoritmos a utilizar; luego se implementaron y se realizaron diferentes pruebas con el fin de elegir los algoritmos que presentaban mejores resultados por cada estrategia de re-identificación, después se integraron en un único desarrollo basado en regresión lineal múltiple el cual tuvo un porcentaje de acierto del 97.4%. De igual manera, se implementó todo el sistema en ROS (sistema operativo robótico) y se realizaron pruebas donde se evaluó si el algoritmo reconocía órdenes básicas personalizadas. | spa |
dc.description.abstract | This document presents the development of a multimodal re-identification algorithm to improve Human-Robot interaction in the home care setting. In this way, different people recognition strategies were integrated, such as facial recognition, voice recognition and soft-biometric characteristics (hair, eye and skin color). For this, in the first place a bibliographic consultation was carried out where possible algorithms to be used were chosen; Later, different tests were implemented and carried out in order to choose the algorithms that presented the best results for each re-identification strategy, then they were integrated into a single development based on multiple linear regression, which had a 97.4% success rate. Similarly, the entire system was implemented in ROS (robotic operating system) and tests were carried out where it was evaluated if the algorithm recognized personalized basic orders. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Electronico | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Plazas Pirabán, L.A. & Betancur Sanchez, B.S. (2021) Desarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar [Trabajo de grado pregrado Ingeniería Electrónica] Repositorio Institucional | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/35563 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Electrónica | spa |
dc.publisher.program | Pregrado Ingeniería Electrónica | spa |
dc.relation.references | Alpaydin E. Introduction to machine learning. MIT press; 2020. | spa |
dc.relation.references | Kapusta A, Erickson Z, Clever HM, et al. Personalized collaborative plans for robot-assisted dressing via optimization and simulation. Autonomous Robots. 2019;43(8):2183-2207. | spa |
dc.relation.references | Zhang DD. Automated biometrics: Technologies and systems. Vol 7. Springer Science & Business Media; 2013. | spa |
dc.relation.references | Alejandra MD. Re-identificaci´on de personas a trav´es de sus caracter´ısticas soft-biom´etricas en un entorno multi-c´amara de video vigilancia. Ingenier´ıa, investigaci´on y tecnolog´ıa. 2016;17(2):257-27 | spa |
dc.relation.references | Norvig P, Russell S. Inteligencia artificial. Editora Campus. 2004;20. | spa |
dc.relation.references | Cong DT, Khoudour L, Achard C, Meurie C, Lezoray O. People re identification by spectral classification of silhouettes. Signal Process. 2010;90(8):2362-2374. | spa |
dc.relation.references | Salter T, Werry I, Michaud F. Going into the wild in child–robot interaction studies: Issues in social robotic development. Intelligent Service Robotics. 2008;1(2):93-108. | spa |
dc.relation.references | Wechsler H, Phillips JP, Bruce V, Soulie FF, Huang TS. Face recognition: From theory to applications. Vol 163. Springer Science & Business Media; 2012. | spa |
dc.relation.references | Zeng J, Zeng J, Qiu X. Deep learning based forensic face verification in videos. . 2017:77-80. | spa |
dc.relation.references | Rashid RA, Mahalin NH, Sarijari MA, Aziz AAA. Security system using biometric technology: Design and implementation of voice recognition system (VRS). . 2008:898-902. | spa |
dc.relation.references | einrich C, Volkhardt M, Gross H. Appearance-based 3d upper body pose estimation and person re-identification on mobile robots. . 2013:4384-4390. | spa |
dc.relation.references | Barea R, Bergasa LM, L´opez E, Escudero MS, Leon C. Face recognition for social interaction with a personal robotic assistant. . 2005;1:382-385. | spa |
dc.relation.references | Hsu C, Lin C, Su W, Cheung G. Sigan: Siamese generative adversarial network for identity-preserving face hallucination. IEEE Trans Image Process. 2019;28(12):6225-6236. | spa |
dc.relation.references | D’Auria D, Persia F, Bettini F, Helmer S, Siciliano B. Sarri: A smart rapiro robot integrating a framework for automatic high-level surveillance event detection. . 2018:238-241 | spa |
dc.relation.references | Matamoros M, Rascon C, Hart J, et al. RoboCup@Home rules & regulations. | spa |
dc.relation.references | Kim D, Yoon H, Chi S, Cho Y. Face identification for human robot interaction: Intelligent security system for multi-user working environment on PC. . 2006:617-622. | spa |
dc.relation.references | Akbulut Y, S¸eng¨ur A, Budak U, Ekici S. Deep learning based face ¨ liveness detection in videos. . 2017:1-4. | spa |
dc.relation.references | Bae H, Lee H, Lee S. Voice recognition based on adaptive MFCC and deep learning. . 2016:1542-1546. | spa |
dc.relation.references | Chakraborty K, Talele A, Upadhya S. Voice recognition using MFCC algorithm. International Journal of Innovative Research in Advanced Engineering (IJIRAE). 2014;1(10):2349-2163. | spa |
dc.relation.references | Fang X, Gu W, Huang C. A method of skin color identification based on color classification. . 2011;4:2355-2358. | spa |
dc.relation.references | Song A, Hu Q, Ding X, Di X, Song Z. Similar face recognition using the IE-CNN model. IEEE Access. 2020;8:45244-45253. | spa |
dc.relation.references | Sinith MS, Salim A, Sankar KG, Narayanan KS, Soman V. A novel method for text-independent speaker identification using mfcc and gmm. . 2010:292-296. | spa |
dc.relation.references | Po lap D, Wo´zniak M. Voice recognition by neuro-heuristic method. Tsinghua Science and Technology. 2018;24(1):9-17. | spa |
dc.relation.references | Christensen HI, Batzinger T, Bekris K, et al. A roadmap for us robotics: From internet to robotics. Computing Community Consortium. 2009;44. | spa |
dc.relation.references | Siciliano B, Caccavale F, Zwicker E, et al. Euroc-the challenge initiative for european robotics. . 2014:1-7. | spa |
dc.relation.references | Tome P, Fierrez J, Vera-Rodriguez R, Nixon MS. Soft biometrics and their application in person recognition at a distance. IEEE Transactions on information forensics and security. 2014;9(3):464-475. | spa |
dc.relation.references | Shan C, Gong S, McOwan PW. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vision Comput. 2009;27(6):803-816. | spa |
dc.relation.references | Ephraim T, Himmelman T, Siddiqi K. Real-time viola-jones face detection in a web browser. . 2009:321-328. | spa |
dc.relation.references | Su´arez EJC. Tutorial sobre máquinas de vectores soporte (sVM). Tutorial sobre Máquinas de Vectores Soporte (SVM). 2014:1-12 | spa |
dc.relation.references | Chandrasekhar AM, Raghuveer K. An effective technique for intrusion detection using neuro -fuzzy and radial svm classifier. In: Computer networks & communications (NetCom). Springer; 2013:499-507 | spa |
dc.relation.references | Olabe XB. Redes neuronales artificiales y sus aplicaciones. Publicaciones de la Escuela de Ingenieros. 1998. | spa |
dc.relation.references | Gazalba I, Reza NGI. Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. . 2017:294-298. | spa |
dc.relation.references | Muda L, Begam M, Elamvazuthi I. Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. arXiv preprint arXiv:1003.4083. 2010. | spa |
dc.relation.references | Eskidere O, G¨urhanlı A. Voice disorder classification based on ¨ multitaper mel frequency cepstral coefficients features. Computational and mathematical methods in medicine. 2015;2015. | spa |
dc.relation.references | Gupta A, Gupta H. Applications of MFCC and vector quantization in speaker recognition. . 2013:170-173 | spa |
dc.relation.references | Huang T, Peng H, Zhang K. Model selection for gaussian mixture models. Statistica Sinica. 2017:147-169. | spa |
dc.relation.references | Buza E, Akagic A, Omanovic S. Skin detection based on image color segmentation with histogram and k-means clustering. . 2017:1181-1186. | spa |
dc.relation.references | He K, Gkioxari G, Doll´ar P, Girshick R. Mask r-cnn. . 2017:2961-2969. | spa |
dc.relation.references | Zhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett. 2016;23(10):1499-1503. | spa |
dc.relation.references | Asafu-Adjei JK, Betensky RA. A pairwise na¨ıve bayes approach to bayesian classification. Int J Pat Recognit Artif Intell. 2015;29(07):1550023. | spa |
dc.relation.references | Jang E, Gu S, Poole B. Categorical reparameterization with gumbel softmax. arXiv preprint arXiv:1611.01144. 201 | spa |
dc.relation.references | Furui S, Kikuchi T, Shinnaka Y, Hori C. Speech-to-text and speech to-speech summarization of spontaneous speech. IEEE Transactions on Speech and Audio Processing. 2004;12(4):401-408. | spa |
dc.relation.references | ROS.org. https://wiki.ros.org/. | spa |
dc.relation.references | Rahmad C, Asmara RA, Putra D, Dharma I, Darmono H, Muhiqqin I. Comparison of viola-jones haar cascade classifier and histogram of oriented gradients (HOG) for face detection. . 2020;732(1):012038. | spa |
dc.relation.references | Shinwari AR, Jalali Balooch A, Alariki AA, Abduljalil Abdulhak S. A comparative study of face recognition algorithms under facial expression and illumination. ICACT. Feb 2019:390-394. https://ieeexplore.ieee.org/document/8702002. doi: 10.23919/ICACT.2019.8702002. | spa |
dc.relation.references | Weng Z, Li L, Guo D. Speaker recognition using weighted dynamic MFCC based on GMM. . 2010:285-288. | spa |
dc.relation.references | Shahin I, Nassif AB, Hamsa S. Novel cascaded gaussian mixture model-deep neural network classifier for speaker identification in emotional talking environments. Neural Computing and Applications. 2020;32(7):2575-2587. | spa |
dc.relation.references | Kumari TJ, Jayanna HS. Comparison of LPCC and MFCC features and GMM and GMM-UBM modeling for limited data speaker verification. . 2014:1-6. | spa |
dc.relation.references | Thakker M, Vyas S, Ved P, Therese SS. Speaker identification in a multi-speaker environment. In: Information and communication technology for sustainable development. Springer; 2018:239-244. | spa |
dc.relation.references | Amante R, S, Tingzon I. Speaker recognition using mel frequency cepstral coefficients with spectral subband centroids features. . | spa |
dc.relation.references | Reynolds DA, Rose RC. Robust text-independent speaker identification using gaussian mixture speaker models. IEEE transactions on speech and audio processing. 1995;3(1):72-83. | spa |
dc.relation.references | Rozario B, Thomas A, Mathew D. Performance comparison of phoneme modeling using MFCC and IHCC features with various optimization algorithms for neural network architectures. . 2019:240- 245 | spa |
dc.relation.references | Kamruzzaman SM, Karim A, Islam M, Haque M. Speaker identification using mfcc-domain support vector machine. arXiv preprint arXiv:1009.4972. 2010. | spa |
dc.relation.references | Mansour A, Lachiri Z. SVM based emotional speaker recognition using MFCC-SDC features. International Journal of Advanced Computer Science and Applications. 2017;8(4):538-544. | spa |
dc.relation.references | Di Nuovo A, Conti D, Trubia G, Buono S, Di Nuovo S. Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics. 2018;7(2):25. | spa |
dc.relation.references | Clearpath Robotics. Husky UGV - outdoor field research robot by clearpath. https://clearpathrobotics.com/husky-unmanned ground vehicle-robot/. | spa |
dc.relation.references | ROS Wiki. rviz. http://wiki.ros.org/rviz | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Face recognition | spa |
dc.subject.keyword | Voice recognition | spa |
dc.subject.keyword | Soft-biometric characteristics | spa |
dc.subject.lemb | Inteligencia artificial | spa |
dc.subject.lemb | Deep learning | spa |
dc.subject.lemb | Algoritmo multimodal | spa |
dc.subject.proposal | Reconocimiento rostro | spa |
dc.subject.proposal | Reconocimiento voz | spa |
dc.subject.proposal | Características soft-biométricas | spa |
dc.title | Desarrollo de un algoritmo de re-identificación multi-modal de personas para mejorar la asistencia personalizada en una casa familiar | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2021bryanbetancur.pdf
- Tamaño:
- 11.31 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento final

- Nombre:
- cartaderechosautor.pdf
- Tamaño:
- 968.99 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta derechos de autor

- Nombre:
- cartaaprobacionfacultad.pdf
- Tamaño:
- 225.75 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta aprobación facultad
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: