Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa

dc.contributor.advisorCerón, Alexandraspa
dc.contributor.advisorCervantes Díaz, Marthaspa
dc.contributor.authorQuintero, Claudia Sofíaspa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2020-02-07T22:29:03Z
dc.date.available2020-02-07T22:29:03Z
dc.date.issued2020-02-05spa
dc.descriptionActualmente, el acetaminofén (ACE) es el analgésico más utilizado en la prevención, diagnóstico y tratamiento de enfermedades en humanos y animales, que finalmente se dispone en el agua al ser excretado en la orina y heces fecales y que finalmente llegan a las plantas de aguas residuales (PTARs) las cuales han sido diseñadas y construidas principalmente para remover materia orgánica y en menor grado nutrientes y microorganismos. Por lo tanto, estimar la concentración la concentración del acetaminofén en la PTAR UPB, constituye un gran avance en la región, ya que la Universidad Pontificia Bolivariana, es la única institución académica que posee un sistema de tratamiento para sus aguas residuales. Adicionalmente, el efluente es vertido en un cuerpo de agua superficial (Quebrada Menzuly), por lo que es de importancia analizar la concentración efectiva del acetaminofén, con el fín de analizar con aproximación su influencia ecotoxicológica. En este estudio se evaluó la concentración del acetaminofén en la planta de tratamiento de aguas residuales de la Universidad Pontificia Bolivariana (PTAR – UPB) en las muestras procendentes del Afluente, Reactor de Flujo a Pistón y Efluente, junto con los lodos utilizando cromatografía de alta resolución (HPLC), adicionalmente se evaluó efecto tóxico empleando como bioindicador el Allium Cepa. Los resultados obtenidos de las matrices extraídas (extracción líquido-líquido) de los lodos y muestras líquidas que fueron analizadas por HPLC, arrojaron datos con un coeficiente de variación entre 0.3% en matrices líquidas y 10% en lodos, porcentajes de recuperación entre 92% -101% en matrices líquidas y y límite de detección de 20 ng/L. Las desviaciones entre los valores obtenidos son pequeños y se deben a la influencia de la matriz y pretratamiento de la muestra. Los resultados muestran concentraciones de acetaminofén entre 460 ng/L y 80 ng/L en el afluente y efluente, respectivamente. En los lodos del reactor de flujo a pistón se obtuvo una concentración 5.2 mg/Kg y en los lechos de secado de 3.4 mg/Kg. La remoción obtenida en la PTAR- UPB por degradación varía entre 88% y 91%, por sorción fue 12% y un 34.7% permaneció en el efluente final. De acuerdo con lo anterior, en la PTAR predominó el proceso de degradación del acetaminofén en la fase líquida y la adsorción en los lodos fue menor. La evaluación ecotoxicológica del acetaminofén (método Allium Cepa) evidenció que la concentración encontrada en el efluente final es menor que la concentración efectiva hallada en el patrón puro (45.34 ppm) y en la pastilla (139.5 ppm), indicando que el contenido de acetaminofén en el efluente no es potencialmente tóxico.spa
dc.description.abstractAt the end of XX century, scientists have been worried about increase of acetaminophen (ACE)consumption, that increase its concentration and toxic effects, due to concentration in sewage and rivers, springs. Aditionally, its frequency of disposal in urine and stool make to acetaminophen increase its presence in sewage of waste wáter treatment plants whose desing is based on organic matter remotion and solids, otherwise microorganisms and other nutrients in low grade, This investigation takes into account two stages: First, to be know (ACE) concentration, its relevant results are related to new knowledge, because PTAR UPB just only treatment system build in academyc institution in Floridablanca-Santader. Aditionally, final effluent is pourted in a Menzuly spring, for that reason to know is very important to know ecotoxicological influence. The methodology based on High Performance Liquid Chromatography was used for the characterization of acetaminophen showed a precision with coefficient of variation between 0.3% -10%, recovery percentages between 92% -101%, detection limit of 20 ng /, the deviations between the low obtained values could be related to the influence of the matrix and pretreatment of the sample. The results showed acetaminophen concentrations between 460 ng / L and 80 ng / L in the tributary and effluent respectively. In the case of Reactor sludge, 5.2 mg / kg and Drying Beds of 3.4 mg / kg were obtained. The removal obtained in the plant by degradation varied between 88% and 91%, per 12% sore and 34.7% remain in the final effluent. Thus, drug removal processes are favored in the liquid phase and the solid phase adsorption phenomenon. The ecotoxicological evaluation of acetaminophen (Allium cepa method) threw values in the pure standard (45.34 ppm) and tablet (139.5 ppm), this indicates that the content of acetaminophen in the Effluent is not potentially toxic.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias y Tecnologías Ambientalesspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationQuintero Duque. C. S (2020) Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tóxico sobre el Allium Cepa [Tesis de maestría] Universidad Santo Tomás. Bucaramanga,Colombia.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/21502
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programMaestría Ciencias y Tecnologías Ambientalesspa
dc.relation.referencesAcevedo-Barrios, R. L., Severiche-Sierra, C. A., & Jaimes Morales, J. D. C. (2017). Efectos tóxicos del paracetamol en la salud humana y el ambiente. Revista de Investigación Agraria y Ambiental, 8(1), 139–149. https://doi.org/10.22490/21456453.1845spa
dc.relation.referencesAmaro, Rosa; Gómez, Luis; Vita, R. A. M. 2013. (2008). Guía de metodos cromatográficos (1st ed.; U. C. de Venezuela, Ed.). Retrieved from http://www.ciens.ucv.ve:8080/generador/sites/LIApregrado/archivos/Guia para cromatografia.pdfspa
dc.relation.referencesAminoshariae, A., & Khan, A. (2015, May 1). Acetaminophen: Old Drug, New Issues. Journal of Endodontics, Vol. 41, pp. 588–593. https://doi.org/10.1016/j.joen.2015.01.024spa
dc.relation.referencesArias Villamizar, Carmen Alicia;Escudero de Fonseca, A. (2011). Estudio preliminar de la presencia de compuestos emergentes en las aguas residuales del Hospital Universidad del Norte. In I. 978-607-607-015-4 (Ed.), IV Simposio iberoamericano de gestion y tratamiento de residuos (pp. 275–280). Mexico: Red iberoamericana en gestion y aprovechamiento de residuos.spa
dc.relation.referencesArikan, O. A., Rice, C., & Codling, E. (2008). Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination, 226(1–3), 121–133. https://doi.org/10.1016/j.desal.2007.01.238spa
dc.relation.referencesBahnick, D. A., & Markee, T. P. (1985). Occurrence and Transport of Organic Microcontaminants in the Duluth-Superior Harbor. Journal of Great Lakes Research, 11(2), 143–155. https://doi.org/10.1016/S0380-1330(85)71753-4spa
dc.relation.referencesBai, Y., Meng, W., Xu, J., Zhang, Y., & Guo, C. (2014). Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China. Environmental Science: Processes & Impacts, 16(3), 586. https://doi.org/10.1039/c3em00567dspa
dc.relation.referencesBeale, D. J. (2017). Mislabeling of Study Design and Overstatement of Findings in “rechallenging Statin Therapy in Veterans with Statin-Induced Myopathy Post Vitamin D Replenishment.” Journal of Pharmacy Practice, 30(3), 385. https://doi.org/10.1177/0897190017699760spa
dc.relation.referencesBennin, F., & Rother, H.-A. (2015). “But it’s just paracetamol”: Caregivers’ ability to administer over-the-counter painkillers to children with the information provided. Patient Education and Counseling, 98(3), 331–337. https://doi.org/10.1016/J.PEC.2014.11.025spa
dc.relation.referencesBhat, S. A., Singh, J., Singh, K., & Vig, A. P. (2018). Genotoxicity monitoring of industrial wastes using plant bioassays and management through vermitechnology: A review. Agriculture and Natural Resources, 51(5), 325–337. https://doi.org/10.1016/j.anres.2017.11.002spa
dc.relation.referencesBotero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., … Hernández, F. (2018). ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater.’ Science of the Total Environment, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088spa
dc.relation.referencesBrouwer, E. ., Kofman, S., & Brinkman, U. A. T. (1995). Selected procedures for the monitoring of polar pesticides and related microcontaminants in aquatic samples. Journal of Chromatography A, 703(1–2), 167–190. https://doi.org/10.1016/0021-9673(94)01237-9spa
dc.relation.referencesCarballa, M., Omil, F., Lema, J. M., Llompart, M., García-Jares, C., Rodríguez, I., … Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918–2926. https://doi.org/10.1016/j.watres.2004.03.029spa
dc.relation.referencesCastro-Suarez, J. R., Pájaro-Payares, A. A., Espinosa-Fuentes, E., & Meza-Fuentes, E. (2017). Vibrational detection of acetaminophen in commercials tablets by ATR-FTIR spectroscopy and Chemometrics. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2017-July(July), 19–21. https://doi.org/10.18687/LACCEI2017.1.1.319spa
dc.relation.referencesCeron, Alexandra; Quintero, Claudia Sofía; León, M. (2017). Ocurrencia y destino de contaminantes farmacéuticos en una planta de tratamiento de aguas residuales institucionales. Bucaramanga.spa
dc.relation.referencesColombia., M. de A. y D. S. de. Resolución_631_de_2015_vertimientos. , Pub. L. No. 0631–2015, 1 (2015).spa
dc.relation.referencesCorrêa Martins, M. N., Souza, V. V. de, & Silva Souza, T. da. (2016). Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere, 148, 481–486. https://doi.org/10.1016/j.chemosphere.2016.01.071spa
dc.relation.referencesDaniela Morais Leme, M. A. M.-M. (2009). Allium cepa test in environmental monitoring: A review on its applicationNo Title. Mutation Research - Reviews in Mutation Research, 682, 71–81. Retrieved from www.elsevier.com/locate/reviewsmrspa
dc.relation.referencesDaughton, C. G. (2016). Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. Science of the Total Environment, 562, 391–426. https://doi.org/10.1016/j.scitotenv.2016.03.109spa
dc.relation.referencesDe la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947–1957. https://doi.org/10.1016/J.WATRES.2012.01.014spa
dc.relation.referencesDesbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., & Laffont-Schwob, I. (2018). Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Science of the Total Environment, 639, 1334–1348. https://doi.org/10.1016/j.scitotenv.2018.04.351spa
dc.relation.referencesDevelopments in Surface Contamination and Cleaning. (2013). In Developments in Surface Contamination and Cleaning. https://doi.org/10.1016/B978-1-4377-7879-3.00001-7spa
dc.relation.referencesDíaz, M., Sacristán, M., & Borja, C. (2011). Curso de cromatografía de líquidos de alta resolución (HPLC): Prácticas de laboratorio y cuestiones teórico-prácticas. Parte II. Práctica de laboratorio: análisis cuantitativo básico. Reduca (Biología, 4(3), 33–47. Retrieved from http://revistareduca.es/index.php/biologia/article/viewFile/842/857spa
dc.relation.referencesE.Clesceri, L. E. A. et A. (2015). Standard Methods of water and wastewater 23th edition. Ekpeghere, K. I., Lee, J.-W., Kim, H.-Y., Shin, S.-K., & Oh, J.-E. (2017). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168, 1211–1221. https://doi.org/10.1016/j.chemosphere.2016.10.077spa
dc.relation.referencesFatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes - Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere. https://doi.org/10.1016/j.chemosphere.2011.06.082spa
dc.relation.referencesFent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009 Flores, J. R., Salcedo, A. M. C., & Fernández, L. M. (2011). Rapid HPLC Method for Monitoring Relevant Residues of Pharmaceuticals Products in Environmental Samples. American Journal of Analytical Chemistry, 02(01), 18–26. https://doi.org/10.4236/ajac.2011.21003spa
dc.relation.referencesGolar, S. K. (2011). Use and understanding of analgesics (painkillers) by Aston university students. Bioscience Horizons, 4(1), 71–78. https://doi.org/10.1093/biohorizons/hzr009spa
dc.relation.referencesGorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. T. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.04.060spa
dc.relation.referencesHalling-Sorensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Liitzhofl, H. C. H., & Jorgensen, S. E. (1998). Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment-A Review. In Chemosphere (Vol. 36).spa
dc.relation.referencesInforme final IEEE proyecto emergentes upb. (n.d.).spa
dc.relation.referencesJean, J., Perrodin, Y., Pivot, C., Trepo, D., Perraud, M., Droguet, J., … Locher, F. (2012). Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. Journal of Environmental Management, 103, 113–121. https://doi.org/10.1016/j.jenvman.2012.03.005spa
dc.relation.referencesJos, A., Repetto, G., Rios, J. C., Hazen, M. J., Molero, M. L., Del Peso, A., … Cameán, A. (2003). Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17(5–6), 525–532. https://doi.org/10.1016/S0887-2333(03)00119-Xspa
dc.relation.referencesKatsoyiannis., N. R. A. C. ;Arminda A. c; A. (2012). Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. Journal of Hazardous Materials, 1(Hazardous materials), 239–240. Retrieved from https://doi.org/10.1016/j.jhazmat.2012.05.040spa
dc.relation.referencesKirkland, D. (1998). Chromosome aberration testing in genetic toxicology - Past, present and future. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 404(1–2), 173–185. https://doi.org/10.1016/S0027-5107(98)00111-0spa
dc.relation.referencesKrzeminski, P., Tomei, M. C., Karaolia, P., Langenhoff, A., Almeida, C. M. R., Felis, E., … Fatta-Kassinos, D. (2019a). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.08.130spa
dc.relation.referencesLai, W. W. P., Lin, Y. C., Tung, H. H., Lo, S. L., & Lin, A. Y. C. (2016). Occurrence of pharmaceuticals and perfluorinated compounds and evaluation of the availability of reclaimed water in Kinmen. Emerging Contaminants, 2(3), 135–144. https://doi.org/10.1016/j.emcon.2016.05.001spa
dc.relation.referencesLee, W. M. (2017). Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? Journal of Hepatology, 67(6), 1324–1331. https://doi.org/10.1016/j.jhep.2017.07.005spa
dc.relation.referencesLeme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research - Reviews in Mutation Research. https://doi.org/10.1016/j.mrrev.2009.06.002spa
dc.relation.referencesLi, S. W., & Lin, A. Y. C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190–196. https://doi.org/10.1016/j.chemosphere.2015.06.010spa
dc.relation.referencesLi, Y., Zhu, G., Ng, W. J., & Tan, S. K. (2014a). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2013.09.018spa
dc.relation.referencesLin, A. Y., Lin, C. A., Tung, H. H., & Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1–3), 242–250. https://doi.org/10.1016/j.jhazmat.2010.07.017spa
dc.relation.referencesLin, Y. C., Panchangam, S. C., Liu, L. C., & Lin, A. Y. C. (2019). The design of a sunlight-focusing and solar tracking system: A potential application for the degradation of pharmaceuticals in water. Chemosphere, 214, 452–461. https://doi.org/10.1016/j.chemosphere.2018.09.114spa
dc.relation.referencesMacLeod, S. L., & Wong, C. S. (2010). Loadings, trends, comparisons, and fate of achiral and chiral pharmaceuticals in wastewaters from urban tertiary and rural aerated lagoon treatments. Water Research. https://doi.org/10.1016/j.watres.2009.09.056spa
dc.relation.referencesMatamoros, V., Nguyen, L. X., Arias, C. A., Salvadó, V., & Brix, H. (2012). Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere, 88(10), 1257–1264. https://doi.org/10.1016/j.chemosphere.2012.04.004spa
dc.relation.referencesMcClellan, K., & Halden, R. U. (2010). Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Research. https://doi.org/10.1016/j.watres.2009.12.032spa
dc.relation.referencesMompelat, S., Le Bot, B., & Thomas, O. (2009). Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35(5), 803–814. https://doi.org/10.1016/j.envint.2008.10.008spa
dc.relation.referencesMoreno-Ortiz, V. C., Martínez-Núñez, J. M., Kravzov-Jinich, J., Pérez-Hernández, L. A., Moreno-Bonett, C., & Altagracia-Martínez, M. (2013). Los medicamentos de receta de origen sintético y su impacto en el medio ambiente. Revista Mexicana de Ciencias Farmaceuticas, 44(4), 17–29.spa
dc.relation.referencesNikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387(4), 1225–1234. https://doi.org/10.1007/s00216-006-1035-8spa
dc.relation.referencesNunes, B., Antunes, S. C., Santos, J., Martins, L., & Castro, B. B. (2014). Toxic potential of paracetamol to freshwater organisms: A headache to environmental regulators? Ecotoxicology and Environmental Safety, 107, 178–185. https://doi.org/10.1016/J.ECOENV.2014.05.027spa
dc.relation.referencesObservamed, & Colombiana, F. M. (2013). Informe SISMED 2012: Cinco años del Sistema de Información de Precios SISMED (Vol. 23). Bogotá.spa
dc.relation.referencesOrtiz de García, S., García-Encina, P. A., & Irusta-Mata, R. (2017). The potential ecotoxicological impact of pharmaceutical and personal care products on humans and freshwater, based on USEtoxTM characterization factors. A Spanish case study of toxicity impact scores. Science of the Total Environment, 609, 429–445. https://doi.org/10.1016/j.scitotenv.2017.07.148spa
dc.relation.referencesPal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. https://doi.org/10.1016/j.scitotenv.2010.09.026spa
dc.relation.referencesPapageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of The Total Environment, 543, 547–569. https://doi.org/10.1016/J.SCITOTENV.2015.11.047spa
dc.relation.referencesPeñate, I. Q., Javier, U., Haza, J., Wilhelm, A., & Delmas, H. (2009). Contaminación de las aguas con productos farmaceuticos. Estrategias para enfrentar la problemática. Revista CENIC : Ciencias Biológicas, 40(3), 173–179.spa
dc.relation.referencesPersistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. (2009). Water Research, 43(2), 351–362. https://doi.org/10.1016/J.WATRES.2008.10.039spa
dc.relation.referencesPetrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. https://doi.org/10.1016/J.WATRES.2014.08.053spa
dc.relation.referencesPhong Vo, H. N., Le, G. K., Hong Nguyen, T. M., Bui, X. T., Nguyen, K. H., Rene, E. R., … Mohan, R. (2019). Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere, 236. https://doi.org/10.1016/j.chemosphere.2019.124391spa
dc.relation.referencesQuesada, S., Tena, A., Guillén, D., Ginebreda, A., Vericat, D., Martínez, E., … Barceló, D. (2014). Dynamics of suspended sediment borne persistent organic pollutants in a large regulated Mediterranean river (Ebro, NE Spain). The Science of the Total Environment, 473–474, 381–390. https://doi.org/10.1016/j.scitotenv.2013.11.040spa
dc.relation.referencesRica, U. D. C., & López, P. (2015). Prueba De Disolución “in Vitro” De Tabletas De Acetaminofén, Cuantificando En Hplc Con Detector Electroquímico. InterSedes: Revista de Las Sedes Regionales, XVI(33), 26–37.spa
dc.relation.referencesRichardson, S. D., & Ternes, T. A. (2011, June). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, Vol. 83, pp. 4616–4648. https://doi.org/10.1021/ac200915rspa
dc.relation.referencesRivera-Jaimes, J. A., Postigo, C., Melgoza-Alemán, R. M., Aceña, J., Barceló, D., & López de Alda, M. (2018). Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.09.134spa
dc.relation.referencesRodriguez-Nogales, J. M., Roura, E., & Contreras, E. (2005). Biosynthesis of ethyl butyrate using immobilized lipase: A statistical approach. Process Biochemistry, 40(1), 63–68. https://doi.org/10.1016/j.procbio.2003.11.049spa
dc.relation.referencesRoose, P., & Brinkman, U. A. T. (2005). Monitoring organic microcontaminants in the marine environment: principles, programmes and progress. TrAC Trends in Analytical Chemistry, 24(11), 897–926. https://doi.org/10.1016/j.trac.2005.10.007spa
dc.relation.referencesSanderson, H., Brain, R. A., Johnson, D. J., Wilson, C. J., & Solomon, K. R. (2004). Toxicity classification and evaluation of four pharmaceuticals classes: Antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology, 203(1–3), 27–40. https://doi.org/10.1016/j.tox.2004.05.015spa
dc.relation.referencesSantos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1–3), 45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100spa
dc.relation.referencesSnyder, L. R. (1975). Practical liquid chromatography. Journal of Chromatography A, 104(2), 480–481. https://doi.org/10.1016/s0021-9673(00)91881-8spa
dc.relation.referencesSun, J., Luo, Q., Wang, D., & Wang, Z. (2015). Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 117, 132–140. https://doi.org/10.1016/j.ecoenv.2015.03.032spa
dc.relation.referencesTejada, C., Quiñones, E., & Peña, M. (2014). Contaminantes Emergentes En Aguas: Metabolitos De Fármacos. Universidad Militar Nueva Granada, 1–48. https://doi.org/10.18359/rfcb.341spa
dc.relation.referencesTrejos, N., & Myriam, C. (2008). Validación de una metodología analítica por HPLC para la cuantificación de sulfadiazina de plata en crema Validation of an analytical methodology by HPLC for the quantification of silver sulfadiazine in cream. 37(2), 191–199.spa
dc.relation.referencesVancouver Island University, U. (2008). Acetaminophen ( Tylenol ) : A Pain to the Environment. Environmental Organic Chemistry, (12), 2008.spa
dc.relation.referencesVerma, A., Nimana, B., Olateju, B., Rahman, M. M., Radpour, S., Canter, C., … Kumar, A. (2017). A techno-economic assessment of bitumen and synthetic crude oil transport (SCO) in the Canadian oil sands industry: Oil via rail or pipeline? Energy. https://doi.org/10.1016/j.energy.2017.02.057spa
dc.relation.referencesWalters, E., McClellan, K., & Halden, R. U. (2010). Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Research, 44(20), 6011–6020. https://doi.org/10.1016/j.watres.2010.07.051spa
dc.relation.referencesXiao, H., Song, H., Xie, H., Huang, W., Tan, J., & Wu, J. (2013). Transformation of acetaminophen using manganese dioxide - mediated oxidative processes: Reaction rates and pathways. Journal of Hazardous Materials, 250–251, 138–146. https://doi.org/10.1016/j.jhazmat.2013.01.070spa
dc.relation.referencesYamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., … Sekizawa, J. (2009). Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43(2), 351–362. https://doi.org/10.1016/j.watres.2008.10.039spa
dc.relation.referencesZhang, Y., & Zhou, J. L. (2008). Occurrence and removal of endocrine disrupting chemicals in wastewater. In Chemosphere (Vol. 73). https://doi.org/10.1016/j.chemosphere.2008.06.001spa
dc.relation.referencesRojas Mantilla Astrid Dayana, T. D. (2016). Estudio de la presencia, ocurrencia y destino final, de un compuesto farmacéutico (acetaminofén) en una planta de tratamiento de agua residual instituacional educativa. Bucaramanga : Universidad Pontificia Bolivariana.No Title (Universidad Pontificia Bolivariana-Seccional Bucaramanga.). https://doi.org/NAspa
dc.relation.referencesWolff, M. S. (2006). Endocrine Disruptors: Challenges for Environmental Research in the 21st Century. Annals of the New York Academy of Sciences, 1076(1), 228–238. https://doi.org/10.1196/annals.1371.009spa
dc.rightsCC0 1.0 Universal*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subject.keywordAcetaminophenspa
dc.subject.keywordWaste water treatmentspa
dc.subject.keywordHPLCspa
dc.subject.keywordAllium Cepa testspa
dc.subject.keywordEffective Concentrationspa
dc.subject.lembMosquitos-controlspa
dc.subject.lembSalud públicaspa
dc.subject.lembEpidemiologíaspa
dc.subject.lembAgentes antibacterialesspa
dc.subject.proposalAcetaminofénspa
dc.subject.proposalPlanta de Aguas Residualesspa
dc.subject.proposalHPLCspa
dc.subject.proposalconcentración efectivaspa
dc.subject.proposalMétodo Allium Cepaspa
dc.titleEvaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepaspa
dc.typemaster thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2020QuinteroClaudia.pdf
Tamaño:
2.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2020QuinteroClaudia1.pdf
Tamaño:
188.9 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de aprobación
Thumbnail USTA
Nombre:
2020QuinteroClaudia2.pdf
Tamaño:
596.57 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de autorización.

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: