Computational modeling of the mechanical modulation of the growth plate by sustained loading

dc.contributor.authorNarváez-Tovar, Carlos Aspa
dc.contributor.authorGarzón-Alvarado, Diego Aspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-02-17T16:03:28Zspa
dc.date.available2020-02-17T16:03:28Zspa
dc.date.issued2012-09-25spa
dc.description.abstractThis paper presents a computational model that describes the growth of the bone as a function of the proliferation and hypertrophy of chondrocytes in the growth plate. We have included the effects of the mechanical loads on the sizes of the proliferative and hypertrophic areas, the number of proliferative chondrocytes and the final size of the hypertrophic chondrocytes. The validation of the model was performed with experimental data published on other investigations about proximal tibia of rats, subjected to sustained axial stresses of 0.1 MPa, 0.0 MPa, -0.1 MPa and −0.2 MPa. Growth was simulated during 23 days, obtaining numerical errors between 2.77% and 3.73% with respect to experimental growth rates. The results obtained show that the model adequately simulates the behavior of the growth plate and the effect of mechanical loads over its cellular activity.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1186/1742-4682-9-41spa
dc.identifier.urihttp://hdl.handle.net/11634/21741
dc.relation.referencesVillemure I, Stokes IA: Growth plate mechanics and mechanobiology. A survey of present understanding. J Biomech 2009, 42:1793–1803.spa
dc.relation.referencesKindblom JM, Nilsson O, Hurme T, Ohlsson C, Savendahl J: Expression and localization of Indian Hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development. J Endocrinol 2002, 174:R1–R6.spa
dc.relation.referencesDelpech JMD: L’Orthomorphie, Volume 2. Paris: Gabon; 1828.spa
dc.relation.referencesStokes IA, Mente PL, Iatridis JC, Farnum CE, Aronsson DD: Enlargement of growth plate chondrocytes modulated by sustained mechanical loading. J Bone Joint Surg Br 2002, 84-A:1842–1848.spa
dc.relation.referencesStokes IA, Clark KC, Farnum CE, Aronsson DD: Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 2007, 41(2):197–205.spa
dc.relation.referencesStokes A, Aronsson DD, Dimock AN, Cortright V, Beck S: Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 2006, 24(6):1327–1334.spa
dc.relation.referencesBrouwers JE, van Donkelaar CC, Sengers BG, Huiskes R: Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? J Biomech 2006, 39(15):2774–2782.spa
dc.relation.referencesGarzón-Alvarado DA, García-Aznar JM, Doblaré M: A reaction–diffusion model for long bones growth. Biomech Model Mechanobiol 2009, 8(5):381–395.spa
dc.relation.referencesCarter DR, Wong M: Mechanical stresses and endochondral ossification in the chondroepiphysis. J Orthop Res 1988, 6(1):148–154.spa
dc.relation.referencesLin H, Aubin C, Parent S, Villemure I: Mechanobiological bone Growth: Comparative analysis of two biomechanical modeling approaches. Med Biol Eng Comput 2009, 47(4):357–366.spa
dc.relation.referencesTaylor JF, Warrel E, Evans RA: The response of the rat tibial growth plates to distal periosteal division. J Anat 1987, 151:221–231.spa
dc.relation.referencesGarzón-Alvarado DA, Narváez-Tovar CA, Silva O: A mathematical model of the growth plate. J Mech Med Biol 2011, 11(5):1213–1240.spa
dc.relation.referencesCancel M, Grimard G, Thuillard-Crisinel D, Moldovan F, Villemure I: Effects of in vivo static compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix. Bone 2009, 44(2):306–315.spa
dc.relation.referencesVillemure I, Chung MA, Seck CS, Kimm MH, Matyas JR, Duncan NA: Static compressive loading reduces the mRNA expression of type II and X collagen in rat growth-plate chondrocytes during postnatal growth. Connect Tissue Res 2005, 46(4–5):211–219.spa
dc.relation.referencesPiszczatowski S: Material aspects of growth plate modelling using Carter’s and Stokes’s approaches. Acta Bioeng Biomech 2011, 13(3):3–14.spa
dc.relation.referencesSergerie K, Lacoursiere MO, Levesque M, Villemure I: Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. J Biomech 2009, 42(4):510–516.spa
dc.relation.referencesSylvestre P, Villemure I, Aubin C: Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput 2007, 45:977–988.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordGrowth platespa
dc.subject.keywordChondrocytesspa
dc.subject.keywordEndochondral ossificationspa
dc.subject.keywordMechanical modulationspa
dc.subject.keywordComputational modelspa
dc.titleComputational modeling of the mechanical modulation of the growth plate by sustained loadingspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Computational modeling of the mechanical modulation of the growth plate by sustained loadin.pdf
Tamaño:
551.55 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: