Learning soccer drills for the small size league of RoboCup

dc.contributor.authorQuintero, Carlosspa
dc.contributor.authorRodríguez, Saithspa
dc.contributor.authorPérez, Katherínspa
dc.contributor.authorLópez, Jorgespa
dc.contributor.authorRojas, Eyberthspa
dc.contributor.authorCalderón, Juanspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-01-16T21:14:38Zspa
dc.date.available2020-01-16T21:14:38Zspa
dc.date.issued2015-01spa
dc.description.abstractThis paper shows the results of applying machine learning techniques to the problem of predicting soccer plays in the Small Size League of RoboCup. We have modeled the task as a multi-class classification problem by learning the plays of the STOx’s team. For this, we have created a database of observations for this team’s plays and obtained key features that describe the game state during a match. We have shown experimentally, that these features allow two learning classifiers to obtain high prediction accuracies and that most miss-classified observations are found early on the plays.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1007/978-3-319-18615-3 32spa
dc.identifier.urihttp://hdl.handle.net/11634/20593
dc.relation.referencesSalustowicz, R.P., Wiering, M.A., Schmidhuber, J.: Learning team strategies: soccer case studies. Mach. Learn. 33, 263–282 (1998)spa
dc.relation.referencesStone, P.: Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer. MIT Press, United States (2000)spa
dc.relation.referencesBianchi, R. A., Ribeiro, C. H., Costa, A. H.: Heuristic selection of actions in multiagent reinforcement learning. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 690–696. Morgan Kaufmann Publishers Inc., San Francisco (2007)spa
dc.relation.referencesStone, Peter, Kuhlmann, Gregory, Taylor, Matthew E., Liu, Yaxin: Keepaway soccer: from machine learning testbed to benchmark. In: Bredenfeld, Ansgar, Jacoff, Adam, Noda, Itsuki, Takahashi, Yasutake (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 93–105. Springer, Heidelberg (2006)spa
dc.relation.referencesDuan, Y., Liu, Q., Xu, X.: Application of reinforcement learning in robot soccer. Eng. Appl. Artif. Intell. 20, 936–950 (2007)spa
dc.relation.referencesKarol, A., Nebel, B., Stanton, C., Williams, M.-A.: Case based game play in the RoboCup four-legged league. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 739–747. Springer, Heidelberg (2004)spa
dc.relation.referencesMarling, C., Tomko, M., Gillen, M., Alexander, D., Chelberg, D.: Case-based reasoning for planning and world modeling in the RoboCup small size league. In: IJCAI Workshop on Issues in Designing Physical Agents for Dynamic Real-time Environments, Acapulco (2003)spa
dc.relation.referencesWendler, J., Bach, J.: Recognizing and predicting agent behavior with case based reasoning. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 729–738. Springer, Heidelberg (2004)spa
dc.relation.referencesRos, R., L´opez de M`antaras, R., Arcos, J.-L., Veloso, M.M.: Team playing behavior in robot soccer: a case-based reasoning approach. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 46–60. Springer, Heidelberg (2007)spa
dc.relation.referencesSteffens, T.: Adapting similarity-measures to agent types in opponent modelling. In: Workshop on Modeling Other Agents from Observations at AAMA, pp. 125– 128, New York (2004)spa
dc.relation.referencesAhmadi, M., Lamjiri, A.K., Nevisi, M.M., Habibi, J., Badie, K.: Using two-layered case-based reasoning for prediction in soccer coach. In: International Conference of Machine Learning. Models, Technologies and Applications, pp. 181–185. CSREA Press, Las Vegas (2003)spa
dc.relation.referencesLattner, A.D., Miene, A., Visser, U., Herzog, O.: Sequential pattern mining for situation and behavior prediction in simulated robotic soccer. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 118–129. Springer, Heidelberg (2006)spa
dc.relation.referencesRiley, P., Veloso, M.: On behavior classification in adversarial environments. In: Parker, L.E., Bekey, G., Barhen, J. (eds.) Distributed Autonomous Robotic Systems, pp. 371–380. Springer, Tokyo (2000)spa
dc.relation.referencesVisser, U., Drcker, C., Hbner, S., Schmidt, E., Weland, H.: Sequential pattern mining for situation and behavior prediction in simulated robotic soccer. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 391–396. Springer, Heidelberg (2001)spa
dc.relation.referencesFaria, B.M., Reis, L.P., Lau, N., Castillo, G.: Machine learning algorithms applied to the classification of robotic soccer formations and opponent teams. In: 2010 IEEE Conference on Cybernetics and Intelligent Systems, pp. 344–349. IEEE Press, Singapore (2010)spa
dc.relation.referencesTrevizan, F., Veloso, M.: Learning opponent’s strategies in the RoboCup small size league. In: Proceedings of the AAMAS 2010 Workshop on Agents in Real-time and Dynamic Environments, pp. 45–52, Toronto (2010)spa
dc.relation.referencesKonur, S., Ferrein, A., Lakemeyer, G.: Learning decision trees for action selection in soccer agents. In: Proceedings of the ECAI-04 Workshop on Agents in Dynamic and Real-time Environments. IOS Press, Valencia (2004)spa
dc.relation.referencesLedezma, A., Aler, R., Sanch´ıs, A., Borrajo, D.: Predicting opponent actions by observation. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 286–296. Springer, Heidelberg (2005)spa
dc.relation.referencesChang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Tech. 2, 1–27 (2011). http://www.csie.ntu.edu.tw/∼ cjlin/libsvmspa
dc.relation.referencesSTOx’s team webpage. http://www.stoxs.org/index.php/en/projects/robocupssl-2spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordMachine learningspa
dc.subject.keywordRoboCup SSLspa
dc.subject.keywordLearning soccer drillsspa
dc.subject.keywordNeural networksspa
dc.subject.keywordSupport vector machinesspa
dc.titleLearning soccer drills for the small size league of RoboCupspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Learning soccer drills for the small size league of RoboCup.pdf
Tamaño:
786.84 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: