Estado del arte de tecnologías autoreparantes en concretos y pavimentos

dc.contributor.advisorTorres, Carlos Eduardo
dc.contributor.authorAcevedo Lemus, Julián Ricardo
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001508029spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=d-W9uvAAAAAJ&hl=esspa
dc.contributor.orcidhttps://orcid.org/0000-0001-7956-4391spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2021-07-15T18:47:58Z
dc.date.available2021-07-15T18:47:58Z
dc.date.issued2021-07-14
dc.descriptionEste documento se llevó a cabo con el objetivo de realizar una revisión del estado del arte y la práctica de tecnologías autoreparantes en concretos y pavimentos existentes, con el fin de establecer las bases para futuras investigaciones. Es relevante mencionar que esta es una investigación cualitativa en donde se hizo la recolección del análisis documental de los diferentes métodos que han surgido para ayudar a concretos y pavimentos a curarse por sí mismos recuperando las propiedades mecánicas del material o incluso mejorándolas. La importancia de conocer estas nuevas tecnologías radica en que los costos por mantenimiento y sus costos derivados son demasiado altos, y se podrían mitigar si los materiales pudieran prolongar su vida útil, curándose microscópicamente para evitar daños macroscópicos que comprometan el desempeño de los materiales en conjunto y de las estructuras en sí. Esto se puede lograr de diversas formas, distintos autores han desarrollado tecnologías, unas más eficientes que otras, en cuanto al concreto estas tecnologías se pueden agrupar en tres; natural, química y biológica. La natural se debe principalmente por la formación de hidróxido de calcio y carbonato de calcio, la química comprende el curado artificial debido a la inyección de componentes químicos en las grietas de la estructura, estos componentes químicos pueden ir encapsulados o en tubos capilares dentro de la matriz de concreto, y la biológica usa también microcápsulas, pero el agente curativo usado son esporas bacterianas. En el asfalto existen tres tecnologías, incorporación de nanopartículas, calentamiento por inducción y rejuvenecedores. Las nanopartículas abarcan dos materiales distintos, la nanoarcilla y el nanocaucho, estos se usan como modificadores para mejorar las propiedades físicas y mecánicas de los aglutinantes ayudando al rendimiento insitu del pavimento asfáltico. El calentamiento por inducción consiste en aditivos conductores que se puedan calentar y ayuden a la reaglomeración de los componentes del asfalto ayudando a cerrar microgrietas, los principales aditivos usados fueron lana de acero, fibras de acero y fibras de carbono. Y finalmente los rejuvenecedores, estos también se emplearon en microcápsulas que iban en conjunto con la mezcla bituminosa, el propósito de los rejuvenecedores es difundirse en el aglutinante envejecido y ayudar a restaurar la estructura molecular original para extender la vida útil del pavimento. Al final se puede evidenciar que los costos de inversión iniciales al incluir tecnologías autorreparables son más altos, pero estos se compensan con la extensión de la vida útil de las estructuras, reduciendo costos en mantenimiento y reparación, que si se ponen en contraste con una estructura común se puede lograr entender el beneficio de los pavimentos y concretos que emplean tecnologías autoreparantes.spa
dc.description.abstractThis document was carried out with the objective of conducting a review of the state of the art and the implementation of self-healing technologies in existing concrete and pavements, in order to establish the bases for future researches. It is relevant to mention that this is a qualitative investigation where a documentary analysis was made of the different methods that have emerged to help concrete and pavements heal themselves, recovering the mechanical properties of the material or even improving them. The importance of knowing these new technologies is that the maintenance costs and their derived costs are too expensive, and could be mitigated if the materials could extend their life - cycle, being cured microscopically to avoid macroscopic damages that compromise the performance of the materials and the structures themselves. This can be achieved in various ways. Different authors have developed technologies, some more effectively than others. In terms of concrete, these technologies can be grouped into three; natural, chemical and biological. The natural is mainly due to the formation of calcium hydroxide and calcium carbonate, chemical one includes artificial curing due to the injection of chemical components into the cracks of the structure, these chemical components can be either encapsulated in microcapsules or in capillary tubes inside the concrete matrix, and the biological one also uses microcapsules, but the healing agent used is bacterial spores. In asphalt there are three technologies, incorporation of nanoparticles, induction heating and rejuvenators. Nanoparticles has two different materials, nanoclay and nanorubber, these are used as modifiers to improve the physical and mechanical properties of the binders, helping the in-situ performance of the asphalt pavement. Induction heating consists of conductive additives that can heat and help re-agglomerate asphalt components helping to close microcracks, the main ones used were steel wool, steel fibers and carbon fibers. And the last one; the rejuvenators, these were also used in microcapsules that went together with the bituminous mixture, the purpose of the rejuvenators is to diffuse into the aged binder and help restore the original molecular structure to extend the life - cycle of the pavement. In the end, it can be seen that the initial investment costs by including self-repairing technologies are higher, but these are offset by the extension of the useful life of the structures, reducing maintenance and repair costs, which if it is contrasted with a regular structure, it is possible to understand the benefit of pavements and concretes that use self-healing technologies.spa
dc.description.degreelevelPregradospa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationAcevedo Lemus, J. R. (2021). Estado del arte de tecnologías autoreparantes en concretos y pavimentos. [Tesis de pregrado, Universidad Santo Tomás].spa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/34927
dc.publisher.programPregrado Ingeniería Civilspa
dc.relation.references20 minutos. (1 de Julio de 2014). Nueva York sufre el frío más intenso desde hace 118 años. 20 minutos.spa
dc.relation.referencesAchal, V., Mukherjee, A., & Reddy, M. S. (2010). Microbial Concrete: Way to Enhance the Durability of Building Structures. Materials in Civil Engineering, 730 - 734.spa
dc.relation.referencesBaluska, F., Volkmann, D., & Barlow, P. W. (2006). Cell-cell channels and their implications for cell theory, in cell-cell channels. Springer, 1 - 18.spa
dc.relation.referencesBauer, S., Schmuki, P., Mark, K. v., & Park, J. (2013). Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Progress in Materials Science, 261- 326.spa
dc.relation.referencesBraissant, O., Verrecchia, E. P., & Aragna, M. (2002). Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften, 366 - 370.spa
dc.relation.referencesCastainer, S., Le, M. G., & Perthuisot, J. P. (2000). Bacterial roles in the precipitation of carbonate minerals. En In microbial sediments (págs. 32- 39). Heidelberg: Springer-Verlag.spa
dc.relation.referencesChávez, R. (2009). Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Frontiers in microbiology, 903.spa
dc.relation.referencesChen, P., McKittrick, J., & Meyers, M. A. (2012). Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science, 1492 - 1704.spa
dc.relation.referencesDaisuke Homma, H. M. (2009). Self-Healing Capability of Fibre Reinforced Cementitious Composites. Journal of Advanced Concrete Technology , 217 - 228.spa
dc.relation.referencesDelft University of Technology. (13 de Abril de 2007). EurekAlert. Obtenido de https://www.eurekalert.org/pub_releases/2007-04/duot-fic_1041307.phpspa
dc.relation.referencesDelft University Tecnology. (2007). First international conference on self-healing materials.spa
dc.relation.referencesDouglas, S., & Beveridge, T. J. (1998). Mineral formation by bacteria in natural Communities. FEMS Microbiology Ecology, 79 - 88.spa
dc.relation.referencesDry, C. (1994 ). Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Materials and Structures, 118.spa
dc.relation.referencesEl Espectador. (20 de enero de 2014). elespectador.com. Obtenido de https://www.elespectador.com/noticias/nacional/ordenan-demoler-todas-las-torres-del-edificio-space/spa
dc.relation.referencesEl Espectador. (8 de Septiembre de 2015). Récord de calor en Nueva York. El Espectador.spa
dc.relation.referencesEmmons, P., & Sordyl, D. (2006). The state of the concrete repair industry, and a vision for its future. Concrete repair bulletin, 7 - 14.spa
dc.relation.referencesEuropean Union Road Federation. (2012). European road statistics 2012. Brussels: European Union Road Federation (ERF).spa
dc.relation.referencesFang, C., Yu, R., Liu, S., & Li, Y. (2013). Nanomaterials applied in asphalt modification: a review. Materials Science and Technology, 589 - 594.spa
dc.relation.referencesFerris, F. G., Fyfe, W. S., & Beveridge, T. J. (1987). Metallic ion binding by Bacillus subtilis: implications for the fossilization of microorganisms. Geology, 149 - 152.spa
dc.relation.referencesFreyermuth, C. L. (2001). Life-Cycle Cost Analysis for Large Bridges. Concrete International, 89 - 95.spa
dc.relation.referencesGarcía, Á. (2012). Self-healing of open cracks in asphalt mastic. Fuel, 264-272.spa
dc.relation.referencesGarcía, A., Jelfs, J., & Austin, C. J. (2015). Internal asphalt mixture rejuvenation using capsules. Construction and Building Materials, 309 - 316.spa
dc.relation.referencesGarcia, A., Schlangen, E., & Ven, M. V. (2010). Two ways of closing cracks on asphalt concrete pavements: microcapsules and induction heating. Key Engineering Materials, 573 - 576.spa
dc.relation.referencesGarcía, A., Schlangen, E., Ven, M. v., & Lu, Q. (2009). Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Construction and Building Materials, 3175 - 3181.spa
dc.relation.referencesGarside, M. (17 de Febrero de 2021). Major countries in worldwide cement production 2010-2020. Obtenido de statista.com: https://www.statista.com/statistics/267364/world-cement-production-by-country/spa
dc.relation.referencesGhosh, P., & Mandal, S. (2006). Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria. Indian Journal of Experimental Biology, 336 - 339.spa
dc.relation.referencesGhosh, S. K. (2009). Self-Healing Materials: Fundamentals, Design Strategies, and Applications. Weinheim: Wiley WCH.spa
dc.relation.referencesH. Mihashi, Y. K. (2000). Fundamental study on development of intelligent concrete characterized by self-healing capability for strength. Transactions of the Japan Concrete Instite, 441- 450.spa
dc.relation.referencesHan, N.-X., & Xing, F. (2016). A Comprehensive Review of the Study and Development of Microcapsule Based Self-Resilience Systems for Concrete Structures at Shenzhen University. Materials, 10.spa
dc.relation.referencesHartnett, K. (2014). Why is ancient Roman concrete still standing? Boston Globe.spa
dc.relation.referencesHearn, N., & Morley, C. T. (1998). Self-healing property of concrete – experimental evidence . Materials & Structures, 563.spa
dc.relation.referencesHilloulin, B., Tittelboom, K., Gruyaert, E., Belie, N. D., & Loukili, A. (2015). Design of polymeric capsules for self-healing concrete. Cement and Concrete Composites, 298 - 307.spa
dc.relation.referencesHolt, J. G., Kried, N. R., Senath, P. H., Staley, J. T., & Williams, S. T. (1993). Williams and Wikins, 786 - 788.spa
dc.relation.referencesHomma, D., Mihashi, H., & Nishiwaki, T. (2009). Self-Healing Capability of Fibre Reinforced Cementitious Composites. Journal of Advanced Concrete Technology, 217 - 228.spa
dc.relation.referencesHT, M., & AP, V. (2013). Influence of fiber polymer reinforced asphalt concrete pavement in high temperature environment. Proceedings of the 2nd electronic international interdisciplinary conference (págs. 465–468). Zilina, Slovak Republic: EICC.spa
dc.relation.referencesIDEAM. (9 de Febrero de 2017). BOGOTÁ SUPERÓ SU PICO HISTÓRICO DE TEMPERATURA. Obtenido de ideam.gov.co: http://www.ideam.gov.co/web/intranet/noticias/-/asset_publisher/gO37c5HXVo8L/content/bogota-supero-su-pico-historico-de-temperatura?_101_INSTANCE_gO37c5HXVo8L_redirect=http%3A%2F%2Fwww.ideam.gov.co%2Fweb%2Fintranet%2Fnoticias%3Fp_p_id%3D101_INSTANCE_gO37cspa
dc.relation.referencesIndustry, A. C. (2018). Cement Industry. Obtenido de http://www.cement.org.au/AustraliasCementIndustry/CIFFastFacts.aspx.spa
dc.relation.referencesJonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 230 - 235.spa
dc.relation.referencesJoseph, C., Jefferson, A. D., & Cantoni, M. B. (2007). Issues relating to the autonomic healing of cementitious materials . Proceedings of first international conference on self-healing materials (pág. Paper 61). Noordwijkaan Zee, Netherlands: Springer CDROM.spa
dc.relation.referencesJoseph, C., Jefferson, A., Isaacs, B., Lark, R., & Gardner, a. D. (2010). Experimental investigation of adhesive-based self-healing of cementitious materials. Magazine of Concrete Research, 831 - 843.spa
dc.relation.referencesKringos, N., Schmets, A., & Scarpas, A. (2011). Towards an understanding of the selfhealing capacity of asphaltic mixtures. HERON, 45 - 74.spa
dc.relation.referencesKumar, P. G. (2020 ). Mixtures, Application of Nano Silica to Improve Self-Healing of Bitumen. CRPASE: TRANSACTIONS OF CIVIL AND ENVIRONMENTAL ENGINEERING, 276 - 280.spa
dc.relation.referencesLa República. (17 de Octubre de 2014). larepublica.co. Obtenido de https://www.larepublica.co/economia/idu-iniciara-reparacion-de-vias-de-transmilenio-y-sitp-con-una-inversion-de-61754-millones-2181666spa
dc.relation.referencesLee, Y. S., & Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied Microbiology and Biotechnology.spa
dc.relation.referencesLi, V. C., & Yang, E. (2007). An alternative approach to 20 centuries of materials science. En Self Healing Materials (págs. 161 - 194). The Netherlands: Springer.spa
dc.relation.referencesLi, V., Lim, Y. M., & Chan, Y. W. (1998). Feasibility study of a passive smart self-healing cementitious composite. Composites Part B, 819 - 827.spa
dc.relation.referencesLi, W., Zhu, X., Zhao, N., & Jiang, Z. (2016). Preparation and Properties of Melamine Urea-Formaldehyde Microcapsules for Self-Healing of Cementitious Materials. Materials, 152.spa
dc.relation.referencesLiu, K., Tian, Y., & Jiang, L. (2013). Bio-inspired superoleophobic and smart materials: Design fabrication, and application. Progress in Materials Science, 503 - 564.spa
dc.relation.referencesLiu, Q. (2012). Induction healing of porous asphalt concrete. Delft: Delft University of Technology.spa
dc.relation.referencesLiu, Q., Schlangen, E., & Bochove, G. v. (2013). The first engineered selh - healing asphalt road; How is it performing? Materials & Enviroment.spa
dc.relation.referencesLiu, Q., Schlangen, E., García, Á., & Ven, M. v. (2010). Induction heating of electrically conductive porous asphalt concrete. Construction and Building Materials, 1207 - 1213.spa
dc.relation.referencesLiu, X., & Wu, S. (2011). Study on the graphite and carbon fiber modified asphalt concrete. Construction and Building Materials, 1807 - 1811.spa
dc.relation.referencesLuhar, S. (2015). A Review Paper on Self Healing Concrete. Journal of Civil Engineering Research, 53-58.spa
dc.relation.referencesLuo, J., Chen, X., Crump, J., Zhou, H., Davies, D. G., Zhou, G., . . . Jin, C. (2018). Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Construction and building materials, 275 - 285.spa
dc.relation.referencesMartinez, J. C., Equihua, R. O., & Quiñones, J. G. (2017). Acerca del Desarrollo y Control de Microorganismos en la Fabricación de Papel. Conciencia Tecnológica .spa
dc.relation.referencesMcNally, T. (2011). Polymer modified bitumen properties. Philadelphia: Woodhead.spa
dc.relation.referencesMinsk, L. D. (1968). Electrically conductive asphalt for control of snow and ice accumulation. Transportation Research Board, 57 - 63.spa
dc.relation.referencesMinsk, L. D. (1971). US Patente nº 3,573,427.spa
dc.relation.referencesMoldovan, A., Patachia, S., Vasile, C., Darie, R., Manaila, E., & Tierean, M. (2010). Natural Fibres/Polyolefins Composites (I) UV and Electron Beam Irradiation J. Biobased Mater. Journal of Biobased Materials and Bioenergy, 58 - 79.spa
dc.relation.referencesMuynck, W. D., Cox, K., Belie, N. D., & Verstraetea, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 875 - 885.spa
dc.relation.referencesNilson, A. H. (2001 ). Diseño de Estructuras en Concreto. Bogotá: Mc Graw Hill.spa
dc.relation.referencesNishiwaki, C. (1997). Fundamental study on development of intelligent concrete with self-healing capability. Sendai, Japón: Department of Architecture and Building Science.spa
dc.relation.referencesNishiwaki, T., Mihashi, H., Jang, B.-K., & Miura, K. (2006). Development of Self-Healing System for Concrete with Selective Heating around Crack. Journal of Advanced Concrete Technology, 267 - 275.spa
dc.relation.referencesNishiwaki, T., Mihashi, H., Jang, B.-K., & Miura, K. (2006). Development of Self-Healing System for Concrete with Selective Heating around Crack. Journal of Advanced Concrete Technology, 267 - 275.spa
dc.relation.referencesOliveira, J., Silva, H., Abreu, L., & Pereira, P. (2012). Effect of Different Production Conditions on the Quality of Hot Recycled Asphalt Mixtures. Procedia - Social and Behavioral Sciences, 266 - 275.spa
dc.relation.referencesPang, J., & Bond, I. (2005). Bleeding composites’—damage detection and self-repair using a biomimetic approach. Composites: Part A, 183 - 188.spa
dc.relation.referencesQian, S., Zhou, J., Rooij, M. d., Schlangen, E., Ye, G., & Breugel, K. v. (2009). Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cement & Concrete Composites, 613 - 621.spa
dc.relation.referencesQiu, J., Ven, M. F., Wu, S., Yu, J., & Molenaar, A. A. (2009). Investigation of self healing capability of bituminous binders. Road Materials ans Pavement Design, 81 - 94.spa
dc.relation.referencesRamachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of Concrete Using Microorganisms. ACI. Materials, 3 - 9.spa
dc.relation.referencesRCN radio. (Enero de 2018). www.rcnradio.com. Obtenido de https://www.rcnradio.com/bogota/8-mil-losas-transmilenio-pesimo-estado-ponen-riesgo-los-bogotanosspa
dc.relation.referencesScopus. Obtenido de https://www.scopus.com/term/analyzer.uri?sid=1b3b6e8ad3821140da5dc27b3899f37a&origin=resultslist&src=s&s=TITLE-ABS-KEY%28concrete+healing%29&sort=cp-f&sdt=b&sot=b&sl=31&count=1077&analyzeResults=Analyze+results&txGid=1fb74182c9d05c3809222f714d3fda1a#spreaspa
dc.relation.referencesRiding, R. (2000). Microbial Carbonates: The geological record of calcified bacterial mats and biofilms. . Sedimentology, 179 - 214.spa
dc.relation.referencesSangadji, S., & Schlangen, E. (2011). Feasibility and potential of prefabricated porous concrete as a component to make concrete structures self-healing. RILEM Publications SARL.spa
dc.relation.referencesSchlangel, E. (2013). Other materials, applications and future developments. Self-healing phenomena in cement-based materials, 241 - 256.spa
dc.relation.referencesSemana. (2017). Losas de transmilenio: ahora responden las cementeras. Revista Semana.spa
dc.relation.referencesSemana. (11 de Octubre de 2018). semana.com. Obtenido de https://www.semana.com/nacion/articulo/megapuentes-en-colombia-hisgaura-con-sus-anomalias-enciende-las-alarmas/590266spa
dc.relation.referencesSemana. (2020). Frío extremo y calor sofocante: ¿Qué pasa con el clima en Bogotá? Semana.spa
dc.relation.referencesShen, J., Amirkhanian, S., & Miller, a. J. (2007). Effects of Rejuvenating Agents on Superpave Mixtures Containing Reclaimed Asphalt Pavement. Journal of Materials in Civil Engineering, 376.spa
dc.relation.referencesSidiq, A., Gravina, R., & Giustozzi, F. (2019). Is concrete healing really efficient? A review. Construction and Building Materials, 257 -273.spa
dc.relation.referencesSteyn, W. J. (2009). Potential Applications of Nanotechnology in Pavement Engineering. Transportation Engineering, 764 - 772.spa
dc.relation.referencesSu, J. -F., & Schlangen, E. (2012). Synthesis and physicochemical properties of high compact microcapsules containing rejuvenator applied in asphalt. Chemical Engineering Journal, 289 - 300.spa
dc.relation.referencesSu, J.-F., Qiu, J., & Schlangen, E. (2013). Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polymer Degradation and Stability, 1205 - 1212.spa
dc.relation.referencesSu, J.-F., Qiu, J., Schlangen, E., & Wang, Y.-Y. (2014). Experimental investigation of self-healing behavior of bitumen/microcapsule composites by a modified beam on elastic foundation method. Materials and Structures, 4067 - 4076.spa
dc.relation.referencesSu, J.-F., Qiu, J., Schlangen, E., & Wang, Y.-Y. (2015). Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: In situ rejuvenation for aged bitumen. Construction and Building Materials, 83 - 92.spa
dc.relation.referencesSu, J.‐F., Wang, X.‐Y., Wang, S.‐B., Zhao, Y.‐H., Zhu, K.‐Y., & Yuan, X.‐Y. (2011). Interface stability behaviors of methanol‐melamine‐formaldehyde shell microPCMs/epoxy matrix composites. Polymer Composites, 810 - 820.spa
dc.relation.referencesSwapan Kumar Ghosh. (2009). Self - Healing Materials. Weinheim: WILEY-VCH.spa
dc.relation.referencesTabakovic, A., & Schlangen, E. (2015). Self-Healing Technology for Asphalt Pavements. Advances in Polymer Science, 1 - 22.spa
dc.relation.referencesTabatabaee, N., & Shafiee, M. H. (2012). Effect of organoclay modified binders on fatigue performance. 7th RILEM international conference on cracking in pavements. Delft, The Nederlands: RILEM Bookseries.spa
dc.relation.referencesTalaiekhozani, A., Keyvanfar, A., A. S., Andalib, R., Majid, M. A., Fulazzaky, M. A., . . . Haidar, H. (2014). A Review of Self-healing Concrete Research Development. Journal of Enviromental Treatment Techniques, 1-11.spa
dc.relation.referencesTalaiekhozani, A., Keyvanfar, A., Andalib, R., Samadi, M., Shafaghat, A., Kamyab, H., . . . Hussin, M. W. (2013). Application of Proteus mirabilis and Proteus vulgaris mixture to design self-healing concrete. Desalination and water treatment, 3623 - 3630.spa
dc.relation.referencesToohey, K. S., Sottos, N. R., Lewis, A. L., Moore, J. S., & White, S. R. (10 de June de 2007). nature.com. Obtenido de Self-healing materials with microvascular networks: https://www.nature.com/articles/nmat1934spa
dc.relation.referencesTorres, O. F. (2018). Condiciones físico - geográficas que determinan el tiempo y el clima sobre el territorio colombiano. La variabilidad climática y el cambio climático en Colombia, 20 - 21.spa
dc.relation.referencesU. K. Gollapudi, C. L. (1995). A new method for controlling leaching through permeable channels. Chemosphere, 695 - 705 .spa
dc.relation.referencesWang, J., Dewanckele, J., Cnudde, V., Vlierberghe, S. V., & Belie, W. V. (2014). X-ray computed tomography proof of bacterial-based self-healing in concrete. CEMENT & CONCRETE COMPOSITES, 289- 304.spa
dc.relation.referencesWang, J., Tittelboom, K. V., Belie, N. D., & Verstraete, W. (2012). Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials, 532 - 540.spa
dc.relation.referencesWhite, S., Sottos, N., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., . . . Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 794 - 817.spa
dc.relation.referencesWILEY-VCH. (2009). Self Healing Materials - Fundamentals, Design Strategies, and Applications. Weinheim: WILEY-VCH Verlag GmbH & Co.spa
dc.relation.referencesWu, M., Johannesson, B., & Geiker, M. (2012). A review: Self-healing in cementitious materials and engineered. Construction and Building Materials, 571 - 583.spa
dc.relation.referencesWu, M., Johannesson, B., & Geiker, M. (2012). A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 571 - 583.spa
dc.relation.referencesWu, S., Mo, L., Shui, Z., & Chen, Z. (2005). Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 1358 - 1363.spa
dc.relation.referencesWu, S., Zhang, Y., & Chen, M. (2010). Research on mechanical characteristics of conductive asphalt concrete by indirect tensile test. Proceedings of the 4th international conference on experimental mechanics. SPIE.spa
dc.relation.referencesWu, S.-p., Liu, X.-m., Ye, Q., & Li, N. (2006). Self-monitoring electrically conductive asphalt-based composite containing carbon fillers. Transactions of Nonferrous Metals Society of China, 512 - 516.spa
dc.relation.referencesZhang, H., Wu, X. H., & Wang, X. L. (2011). Conductivity mechanism of asphalt concrete with the PANI/PP compound conductive fiber. Material Science Forum, 69 - 73.spa
dc.relation.referencesZwaag, S. v. (2010). Routes and mechanisms towards self-healing behavior in engineering materials. The Bulletin of the Polish Academy of Sciences, 227 - 236.spa
dc.relation.referencesZwaag, v. d. (2007). Self Healing Materials - An Alternative Approach to 20 Centuries of Materials Science. The Netherlands : Springer.spa
dc.rightsCC0 1.0 Universal*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subject.keywordSelf healing concretespa
dc.subject.keywordSelf healing pavementspa
dc.subject.keywordSelf healing technologiesspa
dc.subject.keywordHealing agentspa
dc.subject.keywordMicrocracksspa
dc.subject.keywordMicrocapsulesspa
dc.subject.keywordInduction heatingspa
dc.subject.keywordBacteriaspa
dc.subject.lembDiseño de mezclas de concretospa
dc.subject.lembMateriales para carreterasspa
dc.subject.lembPavimentosspa
dc.subject.proposalConcreto autoreparablespa
dc.subject.proposalPavimento autoreparablespa
dc.subject.proposalTecnologías autoreparablesspa
dc.subject.proposalAgente curativospa
dc.subject.proposalMicrogrietasspa
dc.subject.proposalMicrocapsulasspa
dc.subject.proposalInducción por calorspa
dc.subject.proposalBacteriaspa
dc.titleEstado del arte de tecnologías autoreparantes en concretos y pavimentosspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2021julianacevedo.pdf
Tamaño:
1.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Monografía
Thumbnail USTA
Nombre:
Carta de derechos de autor.pdf
Tamaño:
272.47 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta derechos de autor
Thumbnail USTA
Nombre:
210706_CRAI_AcevedoLemus_signed.pdf
Tamaño:
69.46 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: