Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacional

dc.contributor.advisorLópez Vaca, Oscar Rodrigospa
dc.contributor.advisorRamírez Pastran, Jesús Antoniospa
dc.contributor.authorChacón Gil, Karen Lorenaspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000531359spa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001585933spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=V0oEE7cAAAAJ&hl=esspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-02-21T14:15:38Zspa
dc.date.available2019-02-21T14:15:38Zspa
dc.date.issued2019-01-21spa
dc.descriptionEn la búsqueda de fuentes renovables, la tecnología hidrocinética es una buena alternativa de generación que aprovecha la energía de movimiento del agua mediante el uso de turbinas hidrocinéticas. La turbina Savonius, es una turbina de eje vertical que utiliza esta tecnología para producir energía eléctrica a pequeña escala, pero no es tan popular debido a su bajo desempeño. Ya que en la actualidad las investigaciones se han centrado en mejorar el desempeño de estas turbinas, en este trabajo se desarrolló una metodología para predecir el coeficiente de desempeño de una turbina Savonius de perfil helicoidal mediante el uso de dinámica de fluidos computacional (CFD). El presente estudio se divide en dos partes, la primera es una revisión conceptual de la tecnología hidrocinética y de los parámetros de diseño que afectan el desempeño de una turbina tipo Savonius; mientras que la segunda parte es la descripción de las etapas del modelo computacional: Pre-procesamiento, cálculo de la solución y post-procesamiento. Se encontró que el coeficiente de desempeño (Cp.) para una turbina tipo Savonius helicoidal es de 0.135 con un ángulo de torsión de 12.5° para un TSR de 0.9 a una velocidad de corriente de 2 m/s.spa
dc.description.abstractIn search of renewable sources, hydrokinetic technology is a good generation alternative which takes advantage of water movement using hydrokinetic turbines. Savonius turbine, is a vertical shaft axis turbine that uses this technology to produce electricity in small scale, but it is not so popular due to its low performance. Nowadays, searches have been focused on improve the performance of these turbines, that is the reason why in this research a methodology was developed to predict the coefficient of performance for a helical profile Savonius turbine by using computational fluid dynamics (CFD). This research is divided in two parts, the first is a review about hydrokinetic technology and the design parameters that affect Savonius turbine performance; On the other hand, the second part is a description of computational model stages: Pre-processing, Calculation of solution and Post-processing. It was found that coefficient of performance (Cp) for a helical Savonius turbine is 0.135 with torsion angle of 12.5° for a TSR of 0.9 at a current speed of 2 m/s.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Mecánicospa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationChacón Gil Karen Lorena. (2019). Metodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo savonius utilizando dinámica de fluidos computacionalspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/15655
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Mecánicaspa
dc.publisher.programPregrado Ingeniería Mecánicaspa
dc.relation.referencesJ. Vicente, H. Antonio, and A. Prisco, “A review on the performance of Savonius wind turbines,” vol. 16, pp. 3054–3064, 2012spa
dc.relation.referencesH. J. Vermaak, K. Kusakana, and S. P. Koko, “Status of micro-hydrokinetic river technology in rural applications : A review of literature,” vol. 29, pp. 625–633, 2014spa
dc.relation.referencesM. Anyi and B. Kirke, “Energy for Sustainable Development Evaluation of small axial fl ow hydrokinetic turbines for remote communities,” vol. 14, pp. 110–116, 2010spa
dc.relation.referencesM. S. Güney and K. Kaygusuz, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2996–3004, 2010spa
dc.relation.referencesM. S. Guney, “Evaluation and measures to increase performance coefficient of hydrokinetic turbines,” vol. 15, pp. 3669–3675, 2011spa
dc.relation.referencesN. D. Laws and B. P. Epps, “Hydrokinetic energy conversion: Technology, research, and outlook,” Renew. Sustain. Energy Rev., vol. 57, pp. 1245–1259, 2016spa
dc.relation.referencesM. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015spa
dc.relation.referencesA. Kumar and R. P. Saini, “Performance parameters of Savonius type hydrokinetic turbine - A Review,” Renew. Sustain. Energy Rev., vol. 64, pp. 289–310, 2016spa
dc.relation.referencesN. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power,” Energy Convers. Manag., vol. 83, pp. 88–98, 2014spa
dc.relation.referencesR. H. Van Els and A. C. P. B. Junior, “The Brazilian Experience with Hydrokinetic Turbines,” Energy Procedia, vol. 75, pp. 259–264, 2015spa
dc.relation.referencesL. L. Ladokun, B. F. Sule, K. R. Ajao, and A. G. Adeogun, “Resource assessment and feasibility study for the generation of hydrokinetic power in the tailwaters of selected hydropower stations in Nigeria,” Water Sci., no. 2017, 2018spa
dc.relation.referencesM. N. I. Khan, M. Tariq Iqbal, M. Hinchey, and V. Masek, “Performance of savonius rotor as a water current turbine,” J. Ocean Technol., vol. 4, no. 2, pp. 71–83, 2009spa
dc.relation.referencesW. Tian, Z. Mao, and H. Ding, “Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine,” Int. J. Nav. Archit. Ocean Eng., vol. 10, no. 6, pp. 782–793, 2018spa
dc.relation.referencesV. Ramos and G. Iglesias, “Performance assessment of Tidal Stream Turbines: A parametric approach,” Energy Convers. Manag., vol. 69, pp. 49–57, 2013spa
dc.relation.referencesV. Kumar and S. Sarkar, “Performance Analysis of Darrieus Hydrokinetic Turbine,” Shibayan Sarkar Int. J. Eng. Technol. Sci. Res. IJETSR www.ijetsr.com ISSN, vol. 5, no. 3, pp. 2394–3386, 2018spa
dc.relation.referencesN. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and CFD Analyses of Two Bladed Savonius Water Turbine Under Low Velocity Conditions,” 2014spa
dc.relation.referencesJ. J. A. Lopes, J. R. P. Vaz, A. L. A. Mesquita, A. L. A. Mesquita, and C. J. C. Blanco, “An Approach for the Dynamic Behavior of Hydrokinetic Turbines,” Energy Procedia, vol. 75, pp. 271–276, 2015spa
dc.relation.referencesY. Chen, B. Lin, J. Lin, and S. Wang, “Experimental study of wake structure behind a horizontal axis tidal stream turbine,” Appl. Energy, vol. 196, pp. 82–96, 2017spa
dc.relation.referencesM. NAKAJIMA, S. IIO, and T. IKEDA, “Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine,” J. Fluid Sci. Technol., vol. 3, no. 3, pp. 420–429, 2008spa
dc.relation.referencesN. K. Sarma, A. Biswas, and R. D. Misra, “Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power,” Energy Convers. Manag., vol. 83, pp. 88–98, 2014spa
dc.relation.referencesP. K. Talukdar, A. Sardar, V. Kulkarni, and U. K. Saha, “Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations,” Energy Convers. Manag., vol. 158, no. January, pp. 36–49, 2018spa
dc.relation.referencesB. D. Altan and M. Atilgan, “A study on increasing the performance of Savonius wind rotors,” J. Mech. Sci. Technol., vol. 26, no. 5, pp. 1493–1499, 2012spa
dc.relation.referencesF. Behrouzi, M. Nakisa, A. Maimun, and Y. M. Ahmed, “Global renewable energy and its potential in Malaysia : A review of Hydrokinetic turbine technology,” vol. 62, pp. 1270–1281, 2016spa
dc.relation.referencesH. H. Al-Kayiem, B. A. Bhayo, and M. Assadi, “Comparative critique on the design parameters and their effect on the performance of S-rotors,” Renew. Energy, vol. 99, pp. 1306–1317, 2016spa
dc.relation.referencesM. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe, “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Appl. Energy, vol. 86, no. 10, pp. 1823–1835, 2009spa
dc.relation.referencesZ. Zhou, F. Scuiller, J. F. Charpentier, M. Benbouzid, and T. Tang, “An up-to-date review of large marine tidal current turbine technologies,” Proc. - 2014 Int. Power Electron. Appl. Conf. Expo. IEEE PEAC 2014, pp. 480–484, 2014spa
dc.relation.referencesL. Pham and S. Member, “Riverine Hydrokinetic Technology : A Review,” Oregon Tech - Ree516 Term Pap., pp. 1–6, 2014spa
dc.relation.referencesG. Kailash, T. I. Eldho, and S. V. Prabhu, “Performance study of modified savonius water turbine with two deflector plates,” Int. J. Rotating Mach., vol. 2012, 2012spa
dc.relation.referencesM. Zemamou, M. Aggour, and A. Toumi, “Review of savonius wind turbine design and performance,” Energy Procedia, vol. 141, pp. 383–388, 2017spa
dc.relation.referencesKamoji M., Kedare S., and S. Prabhu, “Experimental investigations on single stage, two stage and three stage conventional {S}avonius rotor,” Int. J. Energy Res., vol. 32, no. 10, pp. 877–895, Aug. 2008spa
dc.relation.referencesB. D. Altan and M. Atılgan, “An experimental and numerical study on the improvement of the performance of Savonius wind rotor,” vol. 49, pp. 3425–3432, 2010spa
dc.relation.referencesA. Damak, Z. Driss, and M. S. Abid, “Experimental investigation of helical Savonius rotor with a twist of 180°,” Renew. Energy, vol. 52, pp. 136–142, 2013spa
dc.relation.referencesJ. Tu, G. H. Yeoh, and C. Liu, “Chapter 2 - CFD Solution Procedure—A Beginning,” in Computational Fluid Dynamics, Butterworth-Heinemann, Ed. Burlington, 2008, pp. 29–64spa
dc.relation.referencesY. F. Wang and M. S. Zhan, “3-Dimensional CFD simulation and analysis on performance of a micro-wind turbine resembling lotus in shape,” Energy Build., vol. 65, pp. 66–74, 2013spa
dc.relation.referencesA. Lozano. D, “Capitulo 2: Apuntes sobre dinámica de fluidos computaciones.” pp. 20–45, 2015spa
dc.relation.referencesA. Kumar and R. P. Saini, “Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades,” Renew. Energy, vol. 113, pp. 461–478, 2017.spa
dc.relation.referencesT. C. J. Rs. F. K. E. Laurendeau and Computational, Computational Fluid Dynamics for Engineers. 2005spa
dc.relation.referencesJ. A. Capote, D. Alvear, O. V Abreu, M. Lázaro, and P. Espina, “Influencia del modelo de turbulencia y del refinamiento de la discretización espacial en la exactitud de las simulaciones computacionales de incendios,” Rev. Int. Mét. Num. Cálc. Dis. Ing, vol. 24, no. 3, pp. 227–245, 2008spa
dc.relation.references“ANSYS FLUENT 12.0 Theory Guide - 16.5.11 Turbulence Models.” [Online]. Available: http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node330.htm. [Accessed: 06-Nov-2018]spa
dc.relation.referencesM. H. Mohamed, A. M. Ali, and A. A. Hafiz, “CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter,” Engineering Science and Technology, an International Journal, vol. 18, no. 1, pp. 1–13, 2015spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordhydrokinetic technologyspa
dc.subject.keywordSavonius rotorspa
dc.subject.keywordmethodologyspa
dc.subject.keywordperformancespa
dc.subject.keywordCFDspa
dc.subject.keywordTurbinesspa
dc.subject.lembTurbinasspa
dc.subject.proposaltecnología hidrocinéticaspa
dc.subject.proposalrotor Savoniusspa
dc.subject.proposalmetodologíaspa
dc.subject.proposaldesempeñospa
dc.subject.proposalCFDspa
dc.titleMetodología para la predicción del coeficiente de potencia de una turbina hidrocinética tipo Savonius utilizando dinámica de fluidos computacionalspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
2019_KarenChacón .pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:
Thumbnail USTA
Name:
Carta aprobación.pdf
Size:
35.64 KB
Format:
Adobe Portable Document Format
Description:
Thumbnail USTA
Name:
Carta Derechos de Autor.pdf
Size:
386.45 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Thumbnail USTA
Name:
license.txt
Size:
807 B
Format:
Item-specific license agreed upon to submission
Description: