Pronóstico pospandemia de tráfico aéreo. Caso de Colombia
Cargando...
Fecha
2022-12-13
Enlace al recurso
DOI
gruplac
Descripción Dominio:
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Santo Tomás
Compartir
Documentos PDF
Cargando...
Resumen
La planificación aeroportuaria, y por lo tanto el desarrollo de las infraestructuras aéreas, depende en gran medida de los niveles de demanda que se prevén para el futuro. Para planificar las inversiones en infraestructura de un sistema aeroportuario y poder satisfacer las necesidades futuras, es esencial predecir el nivel y la distribución de la demanda, tanto de pasajeros como de carga aérea. En el presente trabajo de tesis se realizó un pronóstico, a medio-largo plazo (10 años), de la demanda de pasajeros y de carga aérea, aplicado a un caso de estudio concreto, Colombia, y en donde se tuvo en cuenta el impacto en el tráfico aéreo del periodo más severo de la pandemia del COVID-19, año 2020, y el periodo de transición a la pospandemia (2021). Para conseguir tal objetivo, y como planteamiento metodológico, se desarrolla un modelo del tipo Bayesian Structural Time Series (BSTS), diseñado para trabajar con datos de series temporales, y muy utilizado para la selección de características, la previsión de series temporales, la predicción inmediata, y la inferencia del impacto causal. De los resultados obtenidos se puede destacar dos aspectos relevantes, en primer lugar, que tanto la demanda como la tendencia de crecimiento de la misma se recuperará muy pronto (en solo un par de años), con respecto al año prepandemia-2019, en el caso de estudio analizado. Y, en segundo lugar, el modelo presenta valores MAPE muy aceptables (de entre 1% y 7%, según la variable a pronosticar) lo que convierte al método BSTS en una metodología alternativa viable para el cálculo de pronóstico de tráfico aéreo.
Abstract
Airport planning, and therefore the development of air infrastructure, depends to a large extent on the levels of demand that are forecast for the future. To plan investments in infrastructure of an airport system and to be able to meet future needs, it is essential to predict the level and distribution of demand, both for passengers and air cargo. In this thesis work, a medium-long term forecast (10 years) of the demand for passengers and air cargo was made, applied to a specific case study, Colombia, and where the impact on the air traffic during the most severe period of the COVID-19 pandemic, 2020, and the post-pandemic transition period (2021). To achieve this objective, and as a methodological approach, a model of the Bayesian Structural Time Series (BSTS) type is developed, designed to work with time series data, and widely used for feature selection, time series forecasting, immediate, and the inference of the causal impact. From the results obtained, two relevant aspects can be highlighted, firstly, that both demand and its growth trend will recover very soon (in just a couple of years), compared to the pre-pandemic year-2019, in which analyzed case study. And, secondly, the model presents very acceptable MAPE values (between 1% and 7%, depending on the variable to be forecast), which makes the BSTS method a viable alternative methodology for calculating air traffic forecasts.
Idioma
spa
Palabras clave
Citación
Nagera Acosta, A. L. y Lemus Franco, E. H. (2022). Pronóstico post pandemia del tráfico aéreo. Caso de Colombia. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
Colecciones
Licencia Creative Commons
Atribución-NoComercial-SinDerivadas 2.5 Colombia