Pronóstico pospandemia de tráfico aéreo. Caso de Colombia

dc.contributor.advisorDiaz Olariaga, Oscar Eduardo
dc.contributor.advisorRodriguez Pinzon, Heivar Yesid
dc.contributor.authorNagera Acosta, Ana Leonilde
dc.contributor.authorLemus Franco, Exmelin Hamid
dc.contributor.corporatenameUniversidad Santo Tomasspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001561684spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001256491spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=v4XBXJAAAAAJspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=9gC738EAAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0002-4858-3677spa
dc.contributor.orcidhttps://orcid.org/0000-0002-9553-0455spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2022-12-14T13:38:34Z
dc.date.available2022-12-14T13:38:34Z
dc.date.issued2022-12-13
dc.descriptionLa planificación aeroportuaria, y por lo tanto el desarrollo de las infraestructuras aéreas, depende en gran medida de los niveles de demanda que se prevén para el futuro. Para planificar las inversiones en infraestructura de un sistema aeroportuario y poder satisfacer las necesidades futuras, es esencial predecir el nivel y la distribución de la demanda, tanto de pasajeros como de carga aérea. En el presente trabajo de tesis se realizó un pronóstico, a medio-largo plazo (10 años), de la demanda de pasajeros y de carga aérea, aplicado a un caso de estudio concreto, Colombia, y en donde se tuvo en cuenta el impacto en el tráfico aéreo del periodo más severo de la pandemia del COVID-19, año 2020, y el periodo de transición a la pospandemia (2021). Para conseguir tal objetivo, y como planteamiento metodológico, se desarrolla un modelo del tipo Bayesian Structural Time Series (BSTS), diseñado para trabajar con datos de series temporales, y muy utilizado para la selección de características, la previsión de series temporales, la predicción inmediata, y la inferencia del impacto causal. De los resultados obtenidos se puede destacar dos aspectos relevantes, en primer lugar, que tanto la demanda como la tendencia de crecimiento de la misma se recuperará muy pronto (en solo un par de años), con respecto al año prepandemia-2019, en el caso de estudio analizado. Y, en segundo lugar, el modelo presenta valores MAPE muy aceptables (de entre 1% y 7%, según la variable a pronosticar) lo que convierte al método BSTS en una metodología alternativa viable para el cálculo de pronóstico de tráfico aéreo.spa
dc.description.abstractAirport planning, and therefore the development of air infrastructure, depends to a large extent on the levels of demand that are forecast for the future. To plan investments in infrastructure of an airport system and to be able to meet future needs, it is essential to predict the level and distribution of demand, both for passengers and air cargo. In this thesis work, a medium-long term forecast (10 years) of the demand for passengers and air cargo was made, applied to a specific case study, Colombia, and where the impact on the air traffic during the most severe period of the COVID-19 pandemic, 2020, and the post-pandemic transition period (2021). To achieve this objective, and as a methodological approach, a model of the Bayesian Structural Time Series (BSTS) type is developed, designed to work with time series data, and widely used for feature selection, time series forecasting, immediate, and the inference of the causal impact. From the results obtained, two relevant aspects can be highlighted, firstly, that both demand and its growth trend will recover very soon (in just a couple of years), compared to the pre-pandemic year-2019, in which analyzed case study. And, secondly, the model presents very acceptable MAPE values (between 1% and 7%, depending on the variable to be forecast), which makes the BSTS method a viable alternative methodology for calculating air traffic forecasts.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Infraestructura Vialspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationNagera Acosta, A. L. y Lemus Franco, E. H. (2022). Pronóstico post pandemia del tráfico aéreo. Caso de Colombia. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/48350
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Civilspa
dc.publisher.programMaestría Infraestructura Vialspa
dc.relation.referencesAbed, S. Y.; Ba-Fail, A. O. & Jasimuddin, S. M. (2001). An econometric analysis of international air travel demand in Saudi Arabia. Journal of Air Transport Management, 7, 143–148. https://doi.org/10.1016/S0969-6997(00)00043-0spa
dc.relation.referencesACI (2022). The impact of COVID-19 on airports - and the path to recovery. Montreal: ACI World.spa
dc.relation.referencesACI (2021). Annual World Airport Traffic Report. Montreal: ACI (Airports Council International).spa
dc.relation.referencesACI (2016). Traffic Forecast. Montreal: ACI (Airports Council International).spa
dc.relation.referencesAdenigbo, A.; Mageto, J.; Luke, R. (2022). Macroeconomic Determinants of Air Cargo Flows in Ghana. Latin American Journal of Trade Policy, 5(12), 7-36. DOI: 10.5354/0719-9368.2022.67061spa
dc.relation.referencesAerocivil (2022). Estadísticas de transporte aéreo. https://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/boletines-operacionales (visitada el 14 de mayo 2022)spa
dc.relation.referencesAlexander, D.; Merkert, R. (2021). Applications of gravity models to evaluate and forecast US international air freight markets post-GFC. Transport Policy, 104, 52–62. DOI: 10.1016/j.tranpol.2020.04.004spa
dc.relation.referencesAl-Sultan, A.; Al-Rubkhi, A.; Alsaber, A.; Pan, J. (2021). Forecasting air passenger traffic volume: evaluating time series models in long-term forecasting of Kuwait air passenger data. Advances and Applications in Statistics, 70 (1), 69-89. DOI: 10.17654/AS070010069spa
dc.relation.referencesANI - Agencia Nacional de Infraestructura (Colombia) (2022). https://www.ani.gov.co/categorias/aeropuertos (visitada el 18 de mayo 2022)spa
dc.relation.referencesAshford, N.; Mumayiz, S. & Wright, P. (2011). Airport Engineering. New Jersey: John Wiley & Sons.spa
dc.relation.referencesAston, J. A. D. & Koopman, S. J. (2006). A non-Gaussian generalization of the airline model for robust seasonal adjustment. Journal of Forecasting, 25, 325–349. https://doi.org/10.1002/for.991spa
dc.relation.referencesBach, S.; Huang, B.; London, B.; Getoor, L. (2013). Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction. arXiv:1309.6813 [cs.LG]. https://doi.org/10.48550/arXiv.1309.6813spa
dc.relation.referencesBaier, F.; Berster, P.; Gelhausen, M. (2021). Global cargo gravitation model: airports matter for forecasts. International Economics and Economic Policy. DOI: 10.1007/s10368-021-00525-2spa
dc.relation.referencesBao, Y.; Xiong, T. & Hu, Z. (2012). Forecasting Air Passenger Traffic by Support Vector Machines with Ensemble Empirical Mode Decomposition and Slope-Based Method. Discrete Dynamics in Nature and Society, ID 431512, 1-12. doi:10.1155/2012/431512spa
dc.relation.referencesBox, G.; Tiao, G. (1975). Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association, 70, 70–79. http://dx.doi.org/10.1080/01621459.1975.10480264spa
dc.relation.referencesBrodersen, K.; Gallusser, F.; Koehler, J.; Remy, N.; Scott, S. (2015). Inferring causal impact using Bayesian structural time-series models. The Annals of Applied Statistics, 9, 247–274. https://doi.org/10.1214/14-AOAS788spa
dc.relation.referencesBudd, L. & Ison, S. (2017). Air Transport Management. London: Routledge.spa
dc.relation.referencesCerri, J.; Carnevali, L.; Monaco, A.; Genovesi, P.; Bertolino, S. (2022). Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy. NeoBiota, 71, 113–128. https://doi.org/10.3897/neobiota.71.69422spa
dc.relation.referencesChen, S.; Kuo, S.; Chang, K. & Wang, Y. (2012). Improving the forecasting accuracy of air passenger and air cargo demand: the application of back-propagation neural networks. Transportation Planning and Technology, 35(3), 373-392. DOI: 10.1080/03081060.2012.673272spa
dc.relation.referencesChin, A. T. H. & Tay, J. H. (2001). Developments in air transport: implications on investment decisions, profitability and survival of Asian airlines. Journal of Air Transport Management, 7, 319–330. https://doi.org/10.1016/S0969-6997(01)00026-6spa
dc.relation.referencesChou, T.; Liang, G.; Han, T. (2011). Application of fuzzy regression on air cargo volume forecast. Quality and Quantity, 45, 1539–1550. DOI: 10.1007/s11135-010-9342-8spa
dc.relation.referencesDANE - Departamento Administrativo Nacional de Estadística (Colombia) (2022). https://www.dane.gov.co/ (visitada el 17 abril 2022)spa
dc.relation.referencesDantas, T.; Oliveira, F.; Repolho, H. (2017). Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management, 59, 116–123. https://doi.org/10.1016/j.jairtraman.2016.12.006spa
dc.relation.referencesde Neufville, R. & Odoni, A. (2013). Airport Systems, Planning, Design, and Management. New York: McGraw-Hill.spa
dc.relation.referencesDíaz Olariaga, O. (2021). Contribución del transporte aéreo a la conectividad territorial. El caso de Colombia. EURE, 47(140), 117-141. doi: https://doi.org/10.7764/EURE.47.140.06spa
dc.relation.referencesDíaz Olariaga, O.; Alonso, C. (2021). Impact of airport policies on regional development. Evidence from the Colombian case. Regional Science Policy & Practice, 1–26. DOI: 10.1111/rsp3.1248326spa
dc.relation.referencesDíaz Olariaga, O.; Girón, E. (2020). Análisis de la influencia de la privatización de aeropuertos en el pronóstico de la demanda de pasajeros. El caso de Colombia. Revista Transporte y Territorio, 22, 94-113. doi: 10.34096/rtt.i22.8408spa
dc.relation.referencesDíaz Olariaga, O.; Pulido, L. (2019). Measurement of airport efficiency. The case of Colombia. Transport and Telecommunication, 20(1), 40-51spa
dc.relation.referencesDíaz Olariaga, O.; Zea, J.F. (2018). Influence of the liberalization of the air transport industry on configuration of the traffic in the airport network. Transportation Research Procedia, 33, 43-50.spa
dc.relation.referencesDingari, M.; Reddy, M. & Sumalatha, V. (2019). Air Traffic Forecasting Using Artificial Neural Networks. International Journal of Scientific & Technology Research, 8(10), 556-559.spa
dc.relation.referencesDurbin, J.; Koopman, S. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89, 603–615. https://doi.org/10.1093/biomet/89.3.603spa
dc.relation.referencesFernandes, E. & Pacheco, R. R. (2010). The causal relationship between GDP and domestic air passenger traffic in Brazil. Transportation Planning and Technology, 33, 569–581. https://doi.org/10.1080/03081060.2010.512217spa
dc.relation.referencesGarcía Cruzado, M. (2013). Aeropuertos. Planificación, Diseño y Medio Ambiente. Madrid: Ibergarceta Publicaciones.spa
dc.relation.referencesGarrow, L. A. & Koppelman, F. S. (2004). Predicting air travelers’ no-show and standby behavior using passenger and directional itinerary information. Journal of Air Transport Management, 10, 401–411. https://doi.org/10.1016/j.jairtraman.2004.06.007spa
dc.relation.referencesGeorge, E.; McCulloch, R. (1997). Approaches for Bayesian Variable Selection. Statistica Sinica. 7. 339-373. http://www.jstor.org/stable/24306083spa
dc.relation.referencesGiri, S.; Purkayastha, S.; Hazra, S.; Chanda, A.; Das, I.; Das, S. (2020). Prediction of Monthly Hilsa (Tenualosa ilisha) Catch in the Northern Bay of Bengal using Bayesian Structural Time Series Model. Regional Studies in Marine Science. 39, 101456. DOI: 10.1016/j.rsma.2020.101456spa
dc.relation.referencesGriffiths, W. (2001). Bayesian Inference in the Seemingly Unrelated Regressions Model. Computer-aided econometrics. Boca Ratón: CRC Press.spa
dc.relation.referencesGrosche, T.; Rothlauf, F. & Heinzl, A. (2007). Gravity models for airline passenger volume estimation. Journal of Air Transport Management, 13, 175–183. DOI: 10.1016/j.jairtraman.2007.02.001spa
dc.relation.referencesGudmundsson, S.V.; Cattaneo, M. & Redondi, R. (2021). Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19. Journal of Air Transport Management, 91, 102007.spa
dc.relation.referencesGupta, V.; Sharma, K.; Sangwan, M. (2019). Airlines passenger forecasting using LSTM based recurrent neural networks. International Journal Information Theories and Applications, 26(2), 178-187.spa
dc.relation.referencesHamilton, D. (1994). Time Series Analysis. Princeton: Princeton University Press.spa
dc.relation.referencesHarvey, A.; Trimbur, T.; Van Dijk, H. (2007). Trends and Cycles in Economic Time Series: A Bayesian Approach. Journal of Econometrics, 140, 618-649. DOI: 10.1016/j.jeconom.2006.07.006spa
dc.relation.referencesHoeting, J.; Madigan, D.; Raftery, A.; Volinsky, C. (1999). Bayesian Model Averaging: A Tutorial. Statistical Science, 14(4), 382-417. https://www.jstor.org/stable/2676803spa
dc.relation.referencesHonjo, K.; Shiraki, H. & Ashina, S. (2018). Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect. PloS ONE, 13(4), e0196331. https://doi.org/10.1371/journal.pone.0196331spa
dc.relation.referencesHoronjeff, R.; McKelvey, F.; Sproule, W. & Young, S. (2010). Planning and Design of Airports. New York: McGraw-Hill.spa
dc.relation.referencesIATA (2022). Global Outlook for Air Transport. Geneva: IATA.spa
dc.relation.referencesIATA (2021). World Air Transport Statistics 2021. Geneva: IATA.spa
dc.relation.referencesICAO (2022). Effects of Novel Coronavirus (COVID 19) on Civil Aviation: Economic Impact Analysis. Montreal: ICAO.spa
dc.relation.referencesICAO (2006). Manual on Air Traffic Forecasting. Doc 8991. Montreal: ICAO.spa
dc.relation.referencesICAO (1987). Master Planning. Part 1. Doc 9184. Montreal: ICAO.spa
dc.relation.referencesJalali, P.; Rabotyagov, S. (2020). Quantifying cumulative effectiveness of green stormwater infrastructure in improving water quality. Science of the Total Environment, 731, 138953. DOI: 10.1016/j.scitotenv.2020.138953spa
dc.relation.referencesJanic (2021). System Analysis and Modelling in Air Transport. Boca Raton: CRC Press.spa
dc.relation.referencesJanic, M. (2009). Airport analysis, planning and design: demand, capacity and congestion. New York: Nova Science Publishers.spa
dc.relation.referencesJones, R.H. (2019). Longitudinal Data with Serial Correlation: A state-space approach. Boca Raton: Chapman & Hall / CRC Pressspa
dc.relation.referencesKalman, R.E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82, 35-45.spa
dc.relation.referencesKazda, A. & Caves, R. (2015). Airport design and operations. Bingley: Emerald.spa
dc.relation.referencesKiracı, K.; Battal, Ü. (2018). Macroeconomic Determinants of Air Transportation: A VAR Analysis on Turkey. Gaziantep University Journal of Social Sciences, 17(4), 1536-1557.spa
dc.relation.referencesKoller, D.; Friedman, N. (2009). Probabilistic Graphical Models. Cambridge, MA: MIT Press.spa
dc.relation.referencesLi, H.; Bai, J.; Cui, X.; Li, Y.; Sun, S. (2020). A new secondary decomposition-ensemble approach with cuckoo search optimization for air cargo forecasting. Applied Soft Computing Journal, 90, 106161. DOI: 10.1016/j.asoc.2020.106161spa
dc.relation.referencesLiu, J.; Ding, L.; Guan, X.; Gui, J., Xu, J. (2020). Comparative analysis of forecasting for air cargo volume: Statistical techniques vs. machine learning. Journal of Data, Information and Management, 2, 243–255. DOI: 10.1007/s42488-020-00031-1spa
dc.relation.referencesMadhavan, M.; Sharafuddin, M.; Piboonrungroj, P., Yang, C. (2020). Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo. Global Business Review. DOI: 10.1177/0972150920923316spa
dc.relation.referencesMadigan, D.; Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. Journal of the American Statistical Association, 89(428), 1535–1546. https://doi.org/10.2307/2291017spa
dc.relation.referencesMeijer, G. (2020). Fundamentals of Aviation Operations. London: Routledge.spa
dc.relation.referencesMostafaeipour, A.; Goli, A. & Qolipour, M. (2018). Prediction of air travel demand using a hybrid artificial neural network (ANN) with Bat and Firefly algorithms: a case study. The Journal of Supercomputing, 74(10), 5461-5484. https://doi.org/10.1007/s11227-018-2452-0spa
dc.relation.referencesMuros, J.G.; Díaz Olariaga, O. (2021). Utilización de algoritmos de redes neuronales artificiales en el pronóstico de la demanda de pasajeros aéreos. In Serna, E. (Ed.), Desarrollo e Innovación en Ingeniería Vol. I (pp. 277-294). Medellín: Editorial Instituto Antioqueño de Investigación. DOI: 10.5281/5513899spa
dc.relation.referencesNavarro, S.; Acuña, J. (2021). Determination of the average daily annual traffic growth rates in Nicaragua based on macroeconomic data. Revista Ciencia y Tecnología El Higo, 11(2), 70–83. https://doi.org/10.5377/elhigo.v11i2.13033spa
dc.relation.referencesOnder, E.; Kunzu, S. (2014). Forecasting air traffic volumes using smoothing techniques. Journal of Aeronautics and Space Technologies, 7(1), 65-85. DOI: 10.7603/s40690-014-0006-0spa
dc.relation.referencesPeters, J.; Janzing, D.; Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning Algorithms. Cambridge, MA: MIT Press.spa
dc.relation.referencesPetris, G.; Petrone, S.; Campagnoli, P. (2009). Dynamic linear models with R. Springer. https://doi.org/10.1007/b135794_2spa
dc.relation.referencesRen, L.; Glasure, Y. (2009), Applicability of the revised mean absolute percentage errors (mape) approach to some popular normal and non-normal independent time series. International Advances in Economic Research, 15, 409–420. DOI: 10.1080/01621459.1975.10480264spa
dc.relation.referencesRodríguez, M.; Mejía, M.; Zapata, S. (2015). La causalidad entre el crecimiento económico y la expansión del transporte aéreo: un análisis empírico para Chile. Revista de Economía Del Rosario, 18(1), 127–144. https://doi.org/10.12804/rev.econ.rosario.18.01.2015.04spa
dc.relation.referencesRodríguez, Y.; Pineda, W. & Díaz Olariaga, O. (2020). Air traffic forecast in post-liberalization context: a Dynamic Linear Models approach. Aviation, 24(1), 10-19. DOI: 10.3846/aviation.2020.12273spa
dc.relation.referencesSamagaio, A. & Wolters, M. (2010). Comparative analysis of government forecasts for the Lisbon Airport. Journal of Air Transport Management, 16, 213–217. DOI: 10.1016/j.jairtraman.2009.09.002spa
dc.relation.referencesSantana, L.J. (2019). Nowcasting with Google Trends: Dynamics of the Monthly Economic Activity, Private Consumption and Investment based on Google Trends Data and a Bayesianspa
dc.relation.referencesStructural Time Series Model. XIII Foro de Investigadores de Bancos Centrales del Consejo Monetario Centroamericano. Ciudad de Guatemala, Guatemala, 5-6 Sept. 2019. https://www.secmca.org/recard/index.php/foro/article/view/154spa
dc.relation.referencesSchmitt, D; Gollnick, V. (2016). Air Transport System. Heidelberg: Springer.spa
dc.relation.referencesScott, S.; Varian, H. (2014). Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1-2), 4-23.spa
dc.relation.referencesScott, S.; Varian, H. (2015). Bayesian Variable Selection for Nowcasting Economic Time Series. NBER Chapters, in: Economic Analysis of the Digital Economy, 119-135. National Bureau of Economic Research, Incspa
dc.relation.referencesSrisaeng, P.; Baxter, G. & Wild, G. (2015). Using an artificial neural network approach to forecast Australia’s domestic passenger air travel demand. World Review of Intermodal Transportation Research, 5(3), 281-313.spa
dc.relation.referencesStock, J. & Watson, M. (2012). Introducción a la Econometría. Madrid: Pearson.spa
dc.relation.referencesSuryani, E.; Chou, S.; Chen, C. (2012). Dynamic simulation model of air cargo demand forecast and terminal capacity planning. Simulation Modelling Practice and Theory, 28, 27–41. DOI: 10.1016/j.simpat.2012.05.012spa
dc.relation.referencesSuryani, E.; Chou, S.; Chen, C. (2010). Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Systems with Applications, 37, 2324–2339.spa
dc.relation.referencesTascón, D.; Díaz Olariaga, O. (2021). Air traffic forecast and its impact on runway capacity. A System Dynamics approach. Journal of Air Transport Management, vol. 90, 1-10. DOI: 10.1016/j.jairtraman.2020.101946spa
dc.relation.referencesTsui, W. H. K.; Balli, H.; Gilbey, A.; Gow, H. (2014). Forecasting of Hong Kong airport’s passenger throughput. Tourism Management, 42, 62–76. https://doi.org/10.1016/j.tourman.2013.10.008spa
dc.relation.referencesVieira, J.; Braga, C., Pereira, R. (2022). The impact of COVID-19 on air passenger demand and CO2 emissions in Brazil. Energy Policy, 164, 112906. DOI: 10.1016/j.enpol.2022.112906spa
dc.relation.referencesWalpole, R.; Myers, R.; Myers, S; Ye, K. (2012). Probabilidad y estadística para ingenierías y ciencias. México: Pearson.spa
dc.relation.referencesWells, A.; Young, S. (2004). Airport Planning & Management. New York: McGraw-Hill.spa
dc.relation.referencesWest, M. & Harrison, J. (2006). Bayesian forecasting and dynamic models. Springer Science & Business Media.spa
dc.relation.referencesWooldridge, J. (2013). Introductory Econometrics. Mason (OH): South-Western.spa
dc.relation.referencesZhang, Y.; Fricker, J. (2021). Quantifying the Impact of COVID-19 on Non-Motorized Transportation: A Bayesian Structural Time Series Model. Transport Policy, 103, 11-20. DOI: 10.1016/j.tranpol.2021.01.013spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordairportspa
dc.subject.keywordair transportspa
dc.subject.keywordforecastspa
dc.subject.keyworddemandspa
dc.subject.keywordBayesian Structural Time Seriesspa
dc.subject.lembIngeniería Civilspa
dc.subject.lembAeroportuariaspa
dc.subject.lembInfraestructura-Áereasspa
dc.subject.lembPasajerosspa
dc.subject.proposalaeropuertospa
dc.subject.proposaltransporte aéreospa
dc.subject.proposalpronósticospa
dc.subject.proposaldemandaspa
dc.subject.proposalseries de tiempo estructural Bayesiano.spa
dc.titlePronóstico pospandemia de tráfico aéreo. Caso de Colombiaspa
dc.typemaster thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
2022ananageraexmelinlemus.pdf
Size:
661.92 KB
Format:
Adobe Portable Document Format
Description:
Trabajo de grado
Thumbnail USTA
Name:
Carta de aprobación Negera-Lemus (1).pdf
Size:
572.37 KB
Format:
Adobe Portable Document Format
Description:
Carta de aprobación facultad
Thumbnail USTA
Name:
Carta_autorizacion_archivo_autores_2022 (1).pdf
Size:
412.78 KB
Format:
Adobe Portable Document Format
Description:
Carta derechos de autores.

License bundle

Now showing 1 - 1 of 1
Thumbnail USTA
Name:
license.txt
Size:
807 B
Format:
Item-specific license agreed upon to submission
Description: