Pronóstico pospandemia de tráfico aéreo. Caso de Colombia
dc.contributor.advisor | Diaz Olariaga, Oscar Eduardo | |
dc.contributor.advisor | Rodriguez Pinzon, Heivar Yesid | |
dc.contributor.author | Nagera Acosta, Ana Leonilde | |
dc.contributor.author | Lemus Franco, Exmelin Hamid | |
dc.contributor.corporatename | Universidad Santo Tomas | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001561684 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001256491 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?hl=es&user=v4XBXJAAAAAJ | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?hl=es&user=9gC738EAAAAJ | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-4858-3677 | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-9553-0455 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2022-12-14T13:38:34Z | |
dc.date.available | 2022-12-14T13:38:34Z | |
dc.date.issued | 2022-12-13 | |
dc.description | La planificación aeroportuaria, y por lo tanto el desarrollo de las infraestructuras aéreas, depende en gran medida de los niveles de demanda que se prevén para el futuro. Para planificar las inversiones en infraestructura de un sistema aeroportuario y poder satisfacer las necesidades futuras, es esencial predecir el nivel y la distribución de la demanda, tanto de pasajeros como de carga aérea. En el presente trabajo de tesis se realizó un pronóstico, a medio-largo plazo (10 años), de la demanda de pasajeros y de carga aérea, aplicado a un caso de estudio concreto, Colombia, y en donde se tuvo en cuenta el impacto en el tráfico aéreo del periodo más severo de la pandemia del COVID-19, año 2020, y el periodo de transición a la pospandemia (2021). Para conseguir tal objetivo, y como planteamiento metodológico, se desarrolla un modelo del tipo Bayesian Structural Time Series (BSTS), diseñado para trabajar con datos de series temporales, y muy utilizado para la selección de características, la previsión de series temporales, la predicción inmediata, y la inferencia del impacto causal. De los resultados obtenidos se puede destacar dos aspectos relevantes, en primer lugar, que tanto la demanda como la tendencia de crecimiento de la misma se recuperará muy pronto (en solo un par de años), con respecto al año prepandemia-2019, en el caso de estudio analizado. Y, en segundo lugar, el modelo presenta valores MAPE muy aceptables (de entre 1% y 7%, según la variable a pronosticar) lo que convierte al método BSTS en una metodología alternativa viable para el cálculo de pronóstico de tráfico aéreo. | spa |
dc.description.abstract | Airport planning, and therefore the development of air infrastructure, depends to a large extent on the levels of demand that are forecast for the future. To plan investments in infrastructure of an airport system and to be able to meet future needs, it is essential to predict the level and distribution of demand, both for passengers and air cargo. In this thesis work, a medium-long term forecast (10 years) of the demand for passengers and air cargo was made, applied to a specific case study, Colombia, and where the impact on the air traffic during the most severe period of the COVID-19 pandemic, 2020, and the post-pandemic transition period (2021). To achieve this objective, and as a methodological approach, a model of the Bayesian Structural Time Series (BSTS) type is developed, designed to work with time series data, and widely used for feature selection, time series forecasting, immediate, and the inference of the causal impact. From the results obtained, two relevant aspects can be highlighted, firstly, that both demand and its growth trend will recover very soon (in just a couple of years), compared to the pre-pandemic year-2019, in which analyzed case study. And, secondly, the model presents very acceptable MAPE values (between 1% and 7%, depending on the variable to be forecast), which makes the BSTS method a viable alternative methodology for calculating air traffic forecasts. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Infraestructura Vial | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Nagera Acosta, A. L. y Lemus Franco, E. H. (2022). Pronóstico post pandemia del tráfico aéreo. Caso de Colombia. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional. | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/48350 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Ingeniería Civil | spa |
dc.publisher.program | Maestría Infraestructura Vial | spa |
dc.relation.references | Abed, S. Y.; Ba-Fail, A. O. & Jasimuddin, S. M. (2001). An econometric analysis of international air travel demand in Saudi Arabia. Journal of Air Transport Management, 7, 143–148. https://doi.org/10.1016/S0969-6997(00)00043-0 | spa |
dc.relation.references | ACI (2022). The impact of COVID-19 on airports - and the path to recovery. Montreal: ACI World. | spa |
dc.relation.references | ACI (2021). Annual World Airport Traffic Report. Montreal: ACI (Airports Council International). | spa |
dc.relation.references | ACI (2016). Traffic Forecast. Montreal: ACI (Airports Council International). | spa |
dc.relation.references | Adenigbo, A.; Mageto, J.; Luke, R. (2022). Macroeconomic Determinants of Air Cargo Flows in Ghana. Latin American Journal of Trade Policy, 5(12), 7-36. DOI: 10.5354/0719-9368.2022.67061 | spa |
dc.relation.references | Aerocivil (2022). Estadísticas de transporte aéreo. https://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas/boletines-operacionales (visitada el 14 de mayo 2022) | spa |
dc.relation.references | Alexander, D.; Merkert, R. (2021). Applications of gravity models to evaluate and forecast US international air freight markets post-GFC. Transport Policy, 104, 52–62. DOI: 10.1016/j.tranpol.2020.04.004 | spa |
dc.relation.references | Al-Sultan, A.; Al-Rubkhi, A.; Alsaber, A.; Pan, J. (2021). Forecasting air passenger traffic volume: evaluating time series models in long-term forecasting of Kuwait air passenger data. Advances and Applications in Statistics, 70 (1), 69-89. DOI: 10.17654/AS070010069 | spa |
dc.relation.references | ANI - Agencia Nacional de Infraestructura (Colombia) (2022). https://www.ani.gov.co/categorias/aeropuertos (visitada el 18 de mayo 2022) | spa |
dc.relation.references | Ashford, N.; Mumayiz, S. & Wright, P. (2011). Airport Engineering. New Jersey: John Wiley & Sons. | spa |
dc.relation.references | Aston, J. A. D. & Koopman, S. J. (2006). A non-Gaussian generalization of the airline model for robust seasonal adjustment. Journal of Forecasting, 25, 325–349. https://doi.org/10.1002/for.991 | spa |
dc.relation.references | Bach, S.; Huang, B.; London, B.; Getoor, L. (2013). Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction. arXiv:1309.6813 [cs.LG]. https://doi.org/10.48550/arXiv.1309.6813 | spa |
dc.relation.references | Baier, F.; Berster, P.; Gelhausen, M. (2021). Global cargo gravitation model: airports matter for forecasts. International Economics and Economic Policy. DOI: 10.1007/s10368-021-00525-2 | spa |
dc.relation.references | Bao, Y.; Xiong, T. & Hu, Z. (2012). Forecasting Air Passenger Traffic by Support Vector Machines with Ensemble Empirical Mode Decomposition and Slope-Based Method. Discrete Dynamics in Nature and Society, ID 431512, 1-12. doi:10.1155/2012/431512 | spa |
dc.relation.references | Box, G.; Tiao, G. (1975). Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association, 70, 70–79. http://dx.doi.org/10.1080/01621459.1975.10480264 | spa |
dc.relation.references | Brodersen, K.; Gallusser, F.; Koehler, J.; Remy, N.; Scott, S. (2015). Inferring causal impact using Bayesian structural time-series models. The Annals of Applied Statistics, 9, 247–274. https://doi.org/10.1214/14-AOAS788 | spa |
dc.relation.references | Budd, L. & Ison, S. (2017). Air Transport Management. London: Routledge. | spa |
dc.relation.references | Cerri, J.; Carnevali, L.; Monaco, A.; Genovesi, P.; Bertolino, S. (2022). Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy. NeoBiota, 71, 113–128. https://doi.org/10.3897/neobiota.71.69422 | spa |
dc.relation.references | Chen, S.; Kuo, S.; Chang, K. & Wang, Y. (2012). Improving the forecasting accuracy of air passenger and air cargo demand: the application of back-propagation neural networks. Transportation Planning and Technology, 35(3), 373-392. DOI: 10.1080/03081060.2012.673272 | spa |
dc.relation.references | Chin, A. T. H. & Tay, J. H. (2001). Developments in air transport: implications on investment decisions, profitability and survival of Asian airlines. Journal of Air Transport Management, 7, 319–330. https://doi.org/10.1016/S0969-6997(01)00026-6 | spa |
dc.relation.references | Chou, T.; Liang, G.; Han, T. (2011). Application of fuzzy regression on air cargo volume forecast. Quality and Quantity, 45, 1539–1550. DOI: 10.1007/s11135-010-9342-8 | spa |
dc.relation.references | DANE - Departamento Administrativo Nacional de Estadística (Colombia) (2022). https://www.dane.gov.co/ (visitada el 17 abril 2022) | spa |
dc.relation.references | Dantas, T.; Oliveira, F.; Repolho, H. (2017). Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management, 59, 116–123. https://doi.org/10.1016/j.jairtraman.2016.12.006 | spa |
dc.relation.references | de Neufville, R. & Odoni, A. (2013). Airport Systems, Planning, Design, and Management. New York: McGraw-Hill. | spa |
dc.relation.references | Díaz Olariaga, O. (2021). Contribución del transporte aéreo a la conectividad territorial. El caso de Colombia. EURE, 47(140), 117-141. doi: https://doi.org/10.7764/EURE.47.140.06 | spa |
dc.relation.references | Díaz Olariaga, O.; Alonso, C. (2021). Impact of airport policies on regional development. Evidence from the Colombian case. Regional Science Policy & Practice, 1–26. DOI: 10.1111/rsp3.1248326 | spa |
dc.relation.references | Díaz Olariaga, O.; Girón, E. (2020). Análisis de la influencia de la privatización de aeropuertos en el pronóstico de la demanda de pasajeros. El caso de Colombia. Revista Transporte y Territorio, 22, 94-113. doi: 10.34096/rtt.i22.8408 | spa |
dc.relation.references | Díaz Olariaga, O.; Pulido, L. (2019). Measurement of airport efficiency. The case of Colombia. Transport and Telecommunication, 20(1), 40-51 | spa |
dc.relation.references | Díaz Olariaga, O.; Zea, J.F. (2018). Influence of the liberalization of the air transport industry on configuration of the traffic in the airport network. Transportation Research Procedia, 33, 43-50. | spa |
dc.relation.references | Dingari, M.; Reddy, M. & Sumalatha, V. (2019). Air Traffic Forecasting Using Artificial Neural Networks. International Journal of Scientific & Technology Research, 8(10), 556-559. | spa |
dc.relation.references | Durbin, J.; Koopman, S. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89, 603–615. https://doi.org/10.1093/biomet/89.3.603 | spa |
dc.relation.references | Fernandes, E. & Pacheco, R. R. (2010). The causal relationship between GDP and domestic air passenger traffic in Brazil. Transportation Planning and Technology, 33, 569–581. https://doi.org/10.1080/03081060.2010.512217 | spa |
dc.relation.references | García Cruzado, M. (2013). Aeropuertos. Planificación, Diseño y Medio Ambiente. Madrid: Ibergarceta Publicaciones. | spa |
dc.relation.references | Garrow, L. A. & Koppelman, F. S. (2004). Predicting air travelers’ no-show and standby behavior using passenger and directional itinerary information. Journal of Air Transport Management, 10, 401–411. https://doi.org/10.1016/j.jairtraman.2004.06.007 | spa |
dc.relation.references | George, E.; McCulloch, R. (1997). Approaches for Bayesian Variable Selection. Statistica Sinica. 7. 339-373. http://www.jstor.org/stable/24306083 | spa |
dc.relation.references | Giri, S.; Purkayastha, S.; Hazra, S.; Chanda, A.; Das, I.; Das, S. (2020). Prediction of Monthly Hilsa (Tenualosa ilisha) Catch in the Northern Bay of Bengal using Bayesian Structural Time Series Model. Regional Studies in Marine Science. 39, 101456. DOI: 10.1016/j.rsma.2020.101456 | spa |
dc.relation.references | Griffiths, W. (2001). Bayesian Inference in the Seemingly Unrelated Regressions Model. Computer-aided econometrics. Boca Ratón: CRC Press. | spa |
dc.relation.references | Grosche, T.; Rothlauf, F. & Heinzl, A. (2007). Gravity models for airline passenger volume estimation. Journal of Air Transport Management, 13, 175–183. DOI: 10.1016/j.jairtraman.2007.02.001 | spa |
dc.relation.references | Gudmundsson, S.V.; Cattaneo, M. & Redondi, R. (2021). Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19. Journal of Air Transport Management, 91, 102007. | spa |
dc.relation.references | Gupta, V.; Sharma, K.; Sangwan, M. (2019). Airlines passenger forecasting using LSTM based recurrent neural networks. International Journal Information Theories and Applications, 26(2), 178-187. | spa |
dc.relation.references | Hamilton, D. (1994). Time Series Analysis. Princeton: Princeton University Press. | spa |
dc.relation.references | Harvey, A.; Trimbur, T.; Van Dijk, H. (2007). Trends and Cycles in Economic Time Series: A Bayesian Approach. Journal of Econometrics, 140, 618-649. DOI: 10.1016/j.jeconom.2006.07.006 | spa |
dc.relation.references | Hoeting, J.; Madigan, D.; Raftery, A.; Volinsky, C. (1999). Bayesian Model Averaging: A Tutorial. Statistical Science, 14(4), 382-417. https://www.jstor.org/stable/2676803 | spa |
dc.relation.references | Honjo, K.; Shiraki, H. & Ashina, S. (2018). Dynamic linear modeling of monthly electricity demand in Japan: Time variation of electricity conservation effect. PloS ONE, 13(4), e0196331. https://doi.org/10.1371/journal.pone.0196331 | spa |
dc.relation.references | Horonjeff, R.; McKelvey, F.; Sproule, W. & Young, S. (2010). Planning and Design of Airports. New York: McGraw-Hill. | spa |
dc.relation.references | IATA (2022). Global Outlook for Air Transport. Geneva: IATA. | spa |
dc.relation.references | IATA (2021). World Air Transport Statistics 2021. Geneva: IATA. | spa |
dc.relation.references | ICAO (2022). Effects of Novel Coronavirus (COVID 19) on Civil Aviation: Economic Impact Analysis. Montreal: ICAO. | spa |
dc.relation.references | ICAO (2006). Manual on Air Traffic Forecasting. Doc 8991. Montreal: ICAO. | spa |
dc.relation.references | ICAO (1987). Master Planning. Part 1. Doc 9184. Montreal: ICAO. | spa |
dc.relation.references | Jalali, P.; Rabotyagov, S. (2020). Quantifying cumulative effectiveness of green stormwater infrastructure in improving water quality. Science of the Total Environment, 731, 138953. DOI: 10.1016/j.scitotenv.2020.138953 | spa |
dc.relation.references | Janic (2021). System Analysis and Modelling in Air Transport. Boca Raton: CRC Press. | spa |
dc.relation.references | Janic, M. (2009). Airport analysis, planning and design: demand, capacity and congestion. New York: Nova Science Publishers. | spa |
dc.relation.references | Jones, R.H. (2019). Longitudinal Data with Serial Correlation: A state-space approach. Boca Raton: Chapman & Hall / CRC Press | spa |
dc.relation.references | Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82, 35-45. | spa |
dc.relation.references | Kazda, A. & Caves, R. (2015). Airport design and operations. Bingley: Emerald. | spa |
dc.relation.references | Kiracı, K.; Battal, Ü. (2018). Macroeconomic Determinants of Air Transportation: A VAR Analysis on Turkey. Gaziantep University Journal of Social Sciences, 17(4), 1536-1557. | spa |
dc.relation.references | Koller, D.; Friedman, N. (2009). Probabilistic Graphical Models. Cambridge, MA: MIT Press. | spa |
dc.relation.references | Li, H.; Bai, J.; Cui, X.; Li, Y.; Sun, S. (2020). A new secondary decomposition-ensemble approach with cuckoo search optimization for air cargo forecasting. Applied Soft Computing Journal, 90, 106161. DOI: 10.1016/j.asoc.2020.106161 | spa |
dc.relation.references | Liu, J.; Ding, L.; Guan, X.; Gui, J., Xu, J. (2020). Comparative analysis of forecasting for air cargo volume: Statistical techniques vs. machine learning. Journal of Data, Information and Management, 2, 243–255. DOI: 10.1007/s42488-020-00031-1 | spa |
dc.relation.references | Madhavan, M.; Sharafuddin, M.; Piboonrungroj, P., Yang, C. (2020). Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo. Global Business Review. DOI: 10.1177/0972150920923316 | spa |
dc.relation.references | Madigan, D.; Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. Journal of the American Statistical Association, 89(428), 1535–1546. https://doi.org/10.2307/2291017 | spa |
dc.relation.references | Meijer, G. (2020). Fundamentals of Aviation Operations. London: Routledge. | spa |
dc.relation.references | Mostafaeipour, A.; Goli, A. & Qolipour, M. (2018). Prediction of air travel demand using a hybrid artificial neural network (ANN) with Bat and Firefly algorithms: a case study. The Journal of Supercomputing, 74(10), 5461-5484. https://doi.org/10.1007/s11227-018-2452-0 | spa |
dc.relation.references | Muros, J.G.; Díaz Olariaga, O. (2021). Utilización de algoritmos de redes neuronales artificiales en el pronóstico de la demanda de pasajeros aéreos. In Serna, E. (Ed.), Desarrollo e Innovación en Ingeniería Vol. I (pp. 277-294). Medellín: Editorial Instituto Antioqueño de Investigación. DOI: 10.5281/5513899 | spa |
dc.relation.references | Navarro, S.; Acuña, J. (2021). Determination of the average daily annual traffic growth rates in Nicaragua based on macroeconomic data. Revista Ciencia y Tecnología El Higo, 11(2), 70–83. https://doi.org/10.5377/elhigo.v11i2.13033 | spa |
dc.relation.references | Onder, E.; Kunzu, S. (2014). Forecasting air traffic volumes using smoothing techniques. Journal of Aeronautics and Space Technologies, 7(1), 65-85. DOI: 10.7603/s40690-014-0006-0 | spa |
dc.relation.references | Peters, J.; Janzing, D.; Schölkopf, B. (2017). Elements of Causal Inference: Foundations and Learning Algorithms. Cambridge, MA: MIT Press. | spa |
dc.relation.references | Petris, G.; Petrone, S.; Campagnoli, P. (2009). Dynamic linear models with R. Springer. https://doi.org/10.1007/b135794_2 | spa |
dc.relation.references | Ren, L.; Glasure, Y. (2009), Applicability of the revised mean absolute percentage errors (mape) approach to some popular normal and non-normal independent time series. International Advances in Economic Research, 15, 409–420. DOI: 10.1080/01621459.1975.10480264 | spa |
dc.relation.references | Rodríguez, M.; Mejía, M.; Zapata, S. (2015). La causalidad entre el crecimiento económico y la expansión del transporte aéreo: un análisis empírico para Chile. Revista de Economía Del Rosario, 18(1), 127–144. https://doi.org/10.12804/rev.econ.rosario.18.01.2015.04 | spa |
dc.relation.references | Rodríguez, Y.; Pineda, W. & Díaz Olariaga, O. (2020). Air traffic forecast in post-liberalization context: a Dynamic Linear Models approach. Aviation, 24(1), 10-19. DOI: 10.3846/aviation.2020.12273 | spa |
dc.relation.references | Samagaio, A. & Wolters, M. (2010). Comparative analysis of government forecasts for the Lisbon Airport. Journal of Air Transport Management, 16, 213–217. DOI: 10.1016/j.jairtraman.2009.09.002 | spa |
dc.relation.references | Santana, L.J. (2019). Nowcasting with Google Trends: Dynamics of the Monthly Economic Activity, Private Consumption and Investment based on Google Trends Data and a Bayesian | spa |
dc.relation.references | Structural Time Series Model. XIII Foro de Investigadores de Bancos Centrales del Consejo Monetario Centroamericano. Ciudad de Guatemala, Guatemala, 5-6 Sept. 2019. https://www.secmca.org/recard/index.php/foro/article/view/154 | spa |
dc.relation.references | Schmitt, D; Gollnick, V. (2016). Air Transport System. Heidelberg: Springer. | spa |
dc.relation.references | Scott, S.; Varian, H. (2014). Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1-2), 4-23. | spa |
dc.relation.references | Scott, S.; Varian, H. (2015). Bayesian Variable Selection for Nowcasting Economic Time Series. NBER Chapters, in: Economic Analysis of the Digital Economy, 119-135. National Bureau of Economic Research, Inc | spa |
dc.relation.references | Srisaeng, P.; Baxter, G. & Wild, G. (2015). Using an artificial neural network approach to forecast Australia’s domestic passenger air travel demand. World Review of Intermodal Transportation Research, 5(3), 281-313. | spa |
dc.relation.references | Stock, J. & Watson, M. (2012). Introducción a la Econometría. Madrid: Pearson. | spa |
dc.relation.references | Suryani, E.; Chou, S.; Chen, C. (2012). Dynamic simulation model of air cargo demand forecast and terminal capacity planning. Simulation Modelling Practice and Theory, 28, 27–41. DOI: 10.1016/j.simpat.2012.05.012 | spa |
dc.relation.references | Suryani, E.; Chou, S.; Chen, C. (2010). Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Systems with Applications, 37, 2324–2339. | spa |
dc.relation.references | Tascón, D.; Díaz Olariaga, O. (2021). Air traffic forecast and its impact on runway capacity. A System Dynamics approach. Journal of Air Transport Management, vol. 90, 1-10. DOI: 10.1016/j.jairtraman.2020.101946 | spa |
dc.relation.references | Tsui, W. H. K.; Balli, H.; Gilbey, A.; Gow, H. (2014). Forecasting of Hong Kong airport’s passenger throughput. Tourism Management, 42, 62–76. https://doi.org/10.1016/j.tourman.2013.10.008 | spa |
dc.relation.references | Vieira, J.; Braga, C., Pereira, R. (2022). The impact of COVID-19 on air passenger demand and CO2 emissions in Brazil. Energy Policy, 164, 112906. DOI: 10.1016/j.enpol.2022.112906 | spa |
dc.relation.references | Walpole, R.; Myers, R.; Myers, S; Ye, K. (2012). Probabilidad y estadística para ingenierías y ciencias. México: Pearson. | spa |
dc.relation.references | Wells, A.; Young, S. (2004). Airport Planning & Management. New York: McGraw-Hill. | spa |
dc.relation.references | West, M. & Harrison, J. (2006). Bayesian forecasting and dynamic models. Springer Science & Business Media. | spa |
dc.relation.references | Wooldridge, J. (2013). Introductory Econometrics. Mason (OH): South-Western. | spa |
dc.relation.references | Zhang, Y.; Fricker, J. (2021). Quantifying the Impact of COVID-19 on Non-Motorized Transportation: A Bayesian Structural Time Series Model. Transport Policy, 103, 11-20. DOI: 10.1016/j.tranpol.2021.01.013 | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | airport | spa |
dc.subject.keyword | air transport | spa |
dc.subject.keyword | forecast | spa |
dc.subject.keyword | demand | spa |
dc.subject.keyword | Bayesian Structural Time Series | spa |
dc.subject.lemb | Ingeniería Civil | spa |
dc.subject.lemb | Aeroportuaria | spa |
dc.subject.lemb | Infraestructura-Áereas | spa |
dc.subject.lemb | Pasajeros | spa |
dc.subject.proposal | aeropuerto | spa |
dc.subject.proposal | transporte aéreo | spa |
dc.subject.proposal | pronóstico | spa |
dc.subject.proposal | demanda | spa |
dc.subject.proposal | series de tiempo estructural Bayesiano. | spa |
dc.title | Pronóstico pospandemia de tráfico aéreo. Caso de Colombia | spa |
dc.type | master thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/masterThesis | |
dc.type.local | Tesis de maestría | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- 2022ananageraexmelinlemus.pdf
- Size:
- 661.92 KB
- Format:
- Adobe Portable Document Format
- Description:
- Trabajo de grado

- Name:
- Carta de aprobación Negera-Lemus (1).pdf
- Size:
- 572.37 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta de aprobación facultad

- Name:
- Carta_autorizacion_archivo_autores_2022 (1).pdf
- Size:
- 412.78 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta derechos de autores.
License bundle
1 - 1 of 1

- Name:
- license.txt
- Size:
- 807 B
- Format:
- Item-specific license agreed upon to submission
- Description: