Células madre y su aplicación biotecnológica

dc.contributor.authorSánchez Mora, Ruth Mélida
dc.contributor.authorArévalo Pinzón, Gabriela
dc.contributor.authorOstos Ortiz, Olga Lucía
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000464252spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000744719spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000260010spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=VGWRvDEAAAAJspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=yCBpLUsAAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0002-0572-8418spa
dc.contributor.orcidhttps://orcid.org/0000-0002-5331-5693spa
dc.contributor.orcidhttps://orcid.org/0000-0002-6477-9872spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2022-07-16T16:30:32Z
dc.date.available2022-07-16T16:30:32Z
dc.date.issued2022
dc.descriptionLa capacidad autorregenerativa de las células madre es una de sus principales propiedades, la cual ha sido utilizada en procesos de regeneración celular, ya sea para reemplazo o para recuperación celular de tejidos y órganos. Estas células también tienen la habilidad de producir diferentes compuestos farmacológicos y toxicológicos. Así mismo, gracias a sus propiedades antiinflamatorias, antifibróticas regenerativas y antimicrobianas, se sitúan como un recurso biológico interesante. El objetivo de este libro es profundizar en los procesos moleculares y celulares de las células madre y mostrar sus diferentes usos biotecnológicos.spa
dc.format.extent1-127spa
dc.identifier.citationSánchez, R., Arévalo, G., & Ostos, O. (2022). Células madre y su aplicación biotecnológica. Ediciones USTA.spa
dc.identifier.doihttps://doi.org/10.15332/li.lib.2022.00280
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.isbn9789587824995spa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.urihttp://hdl.handle.net/11634/45876
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.programProducción Editorialspa
dc.relation.referencesFriedenstein, A. J., Petrakova, K. V., Kurolesova, A. I. y Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantatio, 6(2), 230-247. https://doi.org/10.1097/00007890-196803000-00009spa
dc.relation.referencesHao, J., Ma, A., Wang, L., Cao, J., Chen, S., Wang, L., Fu, B., Zhou, J., Pei, X., Zhang, Y., Xiang, P., Hu, S., Li, Q., Zhang, Y., Xia, Y., Zhu, H., Stacey, G., Zhou, Q. y Zhao, T. (2020). General requirements for stem cells. Cell Prolif., 53(12), e12926. https://doi.org/10.1111/cpr.12926spa
dc.relation.referencesKhan, F. A., Almohazey, D., Alomari, M. y Almofty, S. A. (2018). Isolation, culture, and functional characterization of human embryonic stem cells: current trends and challenges. Stem Cells International. https://doi.org/10.1155/2018/1429351spa
dc.relation.referencesMata-Miranda, M., Vázquez-Zapién, G. J. y Sánchez-Monroy, V. (2013). Generalidades y aplicaciones de las células madre. Perinatol. Reprod. Hum., 27(3), 194-199.spa
dc.relation.referencesSart, S. y Agathos, S. N. (2018). Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Molecular Biotechnology, 60(11), 843-861. https://doi.org/10.1007/s12033-018-0113-4spa
dc.relation.referencesSchmidt, S., Lilienkampf, A. y Bradley, M. (2018). New substrates for stem cell control. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 373(1750). https://doi.org/10.1098/rstb.2017.0223spa
dc.relation.referencesArbósa, A., Nicolau, F., Quetglas, M., Ramis, J. M., Monjo, M., Muncunill, J., Calvo, J. y Gayà, A. (2013). Obtención de células madre mesenquimales a partir de cordones umbilicales procedentes de un programa altruista de donación de sangre de cordón. Inmunología, 32(1), 3-11. https://doi. org/10.1016/j.inmuno.2012.11.002spa
dc.relation.referencesBao, M., Xie, J. y Huck, W. T. S. (2018). Recent advances in engineering the stem cell microniche in 3D. Advanced Science, 5(8), 1800448. https:// doi.org/10.1002/advs.201800448spa
dc.relation.referencesBartfeld, S. y Clevers, H. (2017). Stem cell-derived organoids and their application for medical research and patient treatment. Journal of Molecular Medicine, 95(7), 729-738. https://doi.org/10.1007/s00109-017-1531-7spa
dc.relation.referencesBrizuela, C., Galleguillos, S., Carrión, F., Cabrera, C., Luz, P. e Inostroza, C. (2013). Aislamiento y caracterización de células madre mesenquimales de pulpa y folículo dental humano. Int. J. Morphol., 31(2), 739-746. https:// doi.org/10.4067/S0717-95022013000200063spa
dc.relation.referencesCenteno, E. G. Z., Cimarosti, H. y Bithell, A. (2018). 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration, 13(1), 27. https://doi. org/10.1186/s13024-018-0258-4spa
dc.relation.referencesDonnelly, H., Salmeron-Sanchez, M. y Dalby, M. J. (2018). Designing stem cell niches for differentiation and self-renewal. Journal of the Royal Society Interface, 15(145). https://doi.org/10.1098/rsif.2018.0388spa
dc.relation.referencesEto, S., Goto, M., Soga, M., Kaneko, Y., Uehara, Y., Mizuta, H. y Era, T. (2018). Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. Plos One, 13(7), e0200790. https://doi.org/10.1371/journal.pone.0200790spa
dc.relation.referencesHo, B. X., Pek, N. M. Q. y Soh, B. S. (2018). Disease modeling using 3D organoids derived from human induced pluripotent stem cells. International Journal of Molecular Sciences, 19(4), 936. https://doi.org/10.3390/ijms19040936spa
dc.relation.referencesJun, D. Y., Kim, S. Y., Na, J. C., Lee, H. H., Kim, J., Yoon, Y. E, Hong, S. J. y Han, W. K. (2018). Tubular organotypic culture model of human kidney. Plos One, 13(10), e0206447. https://doi.org/10.1371/journal.pone.0206447spa
dc.relation.referencesLiu, Z., Tang, M., Zhao, J., Chai, R. y Kang, J. (2018). Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. Advanced Materials, 30(17), e1705388. https://doi.org/10.1002/adma.201705388spa
dc.relation.referencesMizukami, A. y Swiech, K. (2018). Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization. Stem Cells International. https://doi.org/10.1155/2018/4083921spa
dc.relation.referencesOsiecki, M. J., Michl, T. D., Kul Babur, B., Kabiri, M., Atkinson, K., Lott, W. B., Griesser H, J. y Doran, M. R. (2015). Packed bed bioreactor for the isolation and expansion of placental-derived mesenchymal stromal cells. Plos One, 10(12), e0144941. https://doi.org/10.1371/journal.pone.0144941spa
dc.relation.referencesPaim, A., Tessaro, I. C., Cardozo, N. S. M. y Pranke, P. (2018). Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. Journal of Biological Physics, 44(3), 245-271. https://doi.org/10.1007/s10867-018-9482-yspa
dc.relation.referencesPerez-Estenaga, I., Prosper, F. y Pelacho, B. (2018). Allogeneic mesenchymal stem cells and biomaterials: the perfect match for cardiac repair? International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103236spa
dc.relation.referencesPetry, F., Smith, J. R., Leber, J., Salzig, D., Czermak, P. y Weiss, M. L. (2016). Manufacturing of human umbilical cord mesenchymal stromal cells on microcarriers in a dynamic system for clinical use. Stem Cells Int. https://doi.org/10.1155/2016/4834616spa
dc.relation.referencesPetry, F., Weidner, T., Czermak, P. y Salzig, D. (2018). Three-dimensional bioreactor technologies for the cocultivation of human mesenchymal stem/ stromal cells and beta cells. Stem Cells Int. https://doi.org/10.1155/2018/2547098spa
dc.relation.referencesSane, M. S., Misra, N., Mousa, O. M., Czop, S., Tang, H., Khoo, L. T., Jones, C. D. y Mustafi, S. B. (2018). Cytokines in umbilical cord blood-derived cellular product: a mechanistic insight into bone repair. Regenerative Medicine, 13(8), 881-898. https://doi.org/10.2217/rme-2018-0102spa
dc.relation.referencesSart, S. y Agathos, S. N. (2018). Towards three-dimensional dynamic regulation and in situ characterization of single stem cell phenotype using microfluidics. Molecular Biotechnology, 60(11), 843-861. https://doi.org/10.1007/s12033-018-0113-4spa
dc.relation.referencesCable, J., Fuchs, E., Weissman, I., Jasper, H., Glass, D., Rando, T. A., Blau, H., Debnath, S., Oliva, A., Park, S., Passegué, E., Kim, C. y Krasnow, M. A. (2020). Adult stem cells and regenerative medicine: a symposium report. Ann N Y Acad Sci., 1462(1), 27-36. https://doi.org/10.1111/nyas.14243spa
dc.relation.referencesHawsawi, Y. M., Al-Zahrani, F., Mavromatis, C. H., Baghdadi, M. A., Saggu, S. y Oyouni, A. A. A. (2018). Stem cell applications for treatment of cancer and autoimmune diseases: its promises, obstacles, and future perspectives. Technology in Cancer Research & Treatment, 17. https://doi.org/10.1177/1533033818806910spa
dc.relation.referencesLabusca, L., Herea, D. D. y Mashayekhi, K. (2018). Stem Cells as Delivery Vehicles for Regenerative Medicine: Challenges and Perspectives. World Journal of Stem Cells, 10(5), 43-56. https://doi.org/10.4252/wjsc.v10.i5.43spa
dc.relation.referencesLiu, G., David, B. T., Trawczynski, M. y Fessler, R. G. (2020). Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep., 16(1), 3-32. https://doi.org/10.1007/s12015-019-09935-xspa
dc.relation.referencesMata-Miranda, M., Vázquez-Zapién, G. J. y Sánchez-Monroy, V. (2013). Generalidades y aplicaciones de las células madre. Perinatol. Reprod. Hum., 27(3), 194-199.spa
dc.relation.referencesNtege, E. H., Sunami, H. y Shimizu, Y. (2020). Advances in regenerative therapy: A review of the literature and future directions. Regen Ther, 14, 136-153. https://doi.org/10.1016/j.reth.2020.01.004spa
dc.relation.referencesPerez-Estenaga, I., Prosper, F. y Pelacho, B. (2018). Allogeneic Mesenchymal Stem Cells and Biomaterials: The Perfect Match for Cardiac Repair? International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ ijms19103236spa
dc.relation.referencesSerna-Cuéllar, E. y Santamaría-Solís, L. (2013). Protocol of extraction and processing of adult stem cells from abdominal adipose tissue: coordenates of the plastic surgeon in translational researching. Cir. Plást. Iberolatinoam., 39(Supl. 1), s44-s50. https://doi.org/10.4321/S0376-78922013000500012spa
dc.relation.referencesSerra, M., Brito, C., Correia, C. y Alves, P. M. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 30(6), 350-359. https://doi.org/10.1016/j.tibtech.2012.03.003spa
dc.relation.referencesSlack, J. M. W. (2018). What is a stem cell? Wiley interdisciplinary Reviews De- velopmental biology, 7(5), e323. https://doi.org/10.1002/wdev.323spa
dc.relation.referencesUde, C. C., Miskon, A., Idrus, R. B. H. y Abu Bakar, M. B. (2018). Application of stem cells in tissue engineering for defense medicine. Military Medical Research, 5(1), 7. https://doi.org/10.1186/s40779-018-0154-9spa
dc.relation.referencesUllah, I., Subbarao, R. B. y Rho, G. J. (2015). Human mesenchymal stem cells: current trends and future prospective. Bioscience Reports, 35(2). https:// doi.org/10.1042/BSR20150025spa
dc.relation.referencesWang, B. X., Kit-Anan, W. y Terracciano, CM. N. (2018). Many cells make life work. Multicellularity in stem cell-based cardiac disease modelling. International Journal of Molecular Sciences, 19(11), 3361. https://doi. org/10.3390/ijms19113361spa
dc.relation.referencesZhu, Y. e Yi, Y. (2017). Research progress and clinical prospect of three-dimensional spheroid culture of mesenchymal stem cells. Chinese Journal of Reparative and Reconstructive Surgery, 31(4), 497-503. https://doi. org/10.7507/1002-1892.201612056spa
dc.relation.referencesJenkins, M. J. y Farid, S. S. (2015). Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnology Journal, 10(1), 83-95. https://doi.org/10.1002/ biot.201400348spa
dc.relation.referencesGamble, A., Pawlick, R., Pepper, A. R., Bruni, A., Adesida, A., Senior, P. A., Korbutt, G. S. y Shapiro. A. M. J. (2018). Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. Plos One, 13(11), e0206449. https://doi.org/10.1371/journal.pone.0206449spa
dc.relation.referencesGuo, G. R., Chen, L., Rao, M., Chen, K., Song, J. P. y Hu, S. S. (2018). A modified method for isolation of human cardiomyocytes to model cardiac diseases. Journal of Translational Medicine, 16, 288. https://doi. org/10.1186/s12967-018-1649-6spa
dc.relation.referencesHassan, S., Simaria, A. S., Varadaraju, H., Gupta, S., Warren, K. y Farid, S. S. (2015). Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Regenerative Medicine, 10(5), 591- 609. https://doi.org/10.2217/rme.15.29spa
dc.relation.referencesJossen, V., van den Bos, C., Eibl, R. y Eibl, D. (2018). Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Applied Microbiology and Biotechnology, 102(9), 3981-3994. https:// doi.org/10.1007/s00253-018-8912-xspa
dc.relation.referencesKim, S., Lee, S. K., Kim, H. y Kim, T. M. (2018). Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103119spa
dc.relation.referencesKlar, A. S., Zimoch, J. y Biedermann, T. (2017). Skin tissue engineering: application of adipose-derived stem cells. BioMed Research International. https:// doi.org/10.1155/2017/9747010spa
dc.relation.referencesLee, J., Cho, Y. S., Jung, H. y Choi, I. (2018). Pharmacological regulation of oxidative stress in stem cells. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/4081890spa
dc.relation.referencesLin, H., Du, Q., Li, Q., Wang, O., Wang, Z., Sahu, N., Elowsky, C., Liu, K., Zhang, C., Chung, S., Duan, B. y Lei, Y. (2018). A scalable and efficient bioprocess for manufacturing human pluripotent stem cell-de- rived endothelial cells. Stem Cell Reports, 11(2), 454-469. https://doi.org/10.1016/j.stemcr.2018.07.001spa
dc.relation.referencesPlaczek, M. R., Chung, I. M., Macedo, H. M., Ismail, S., Mortera Blanco, T., Lim, M., Jae, M. C., Iliana, F., Yunyi, K., Yeo, D. C. L., Ma Chi, Y. C., Polak, J. M., Panoskaltsis, N. y Mantalaris, A. (2009). Stem cell bioprocessing: fundamentals and principles. Journal of the Royal Society Interface, 6(32), 209-232. https://doi.org/10.1098/rsif.2008.0442spa
dc.relation.referencesShyh-Chang, N., Daley, G. Q. y Cantley, L. C. (2013). Stem cell metabolism in tissue development and aging. Development, 140(12), 2535-2547. https://doi.org/10.1242/dev.091777spa
dc.relation.referencesSilva, M. M., Rodrigues, A. F., Correia, C., Sousa, M. F., Brito, C., Coroadinha, A. S., Serra, M. y Alves, P. M. (2015). Robust expansion of human pluripotent stem cells: integration of bioprocess design with transcriptomic and metabolomic characterization. Stem Cells Translational Medicine, 4(7), 731-742. https://doi.org/10.5966/sctm.2014-0270spa
dc.relation.referencesSui, L., Danzl, N., Campbell, S. R., Viola, R., Williams, D., Xing, Y., Wang, Y., Phillips, N., Poffenberger, G., Johannesson, B., Oberholzer, J., Powers, A. C., Leibel, R. L., Chen, X., Sykes, M. y Egli, D. (2018). β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes, 67(1), 26-35. https://doi.org/10.2337/db17-0120spa
dc.relation.urihttps://ediciones.usta.edu.co/index.php/publicaciones/ciencias-sociales/c%C3%A9lulas-madre-y-su-aplicaci%C3%B3n-biotecnol%C3%B3gica-detailspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordMother cellsspa
dc.subject.keywordhematopoietic stem cellsspa
dc.subject.keywordRegenerative medicinespa
dc.subject.lembCélulas madrespa
dc.subject.lembCélulas madre hematopoyéticasspa
dc.subject.lembMedicina regenerativaspa
dc.titleCélulas madre y su aplicación biotecnológicaspa
dc.type.categoryGeneración de Nuevo Conocimiento: Libro resultado de investigaciónspa
dc.type.driveinfo:eu-repo/semantics/book
dc.type.localLibrospa
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Obracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdf
Tamaño:
7.6 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: