Células madre y su aplicación biotecnológica
dc.contributor.author | Sánchez Mora, Ruth Mélida | |
dc.contributor.author | Arévalo Pinzón, Gabriela | |
dc.contributor.author | Ostos Ortiz, Olga Lucía | |
dc.contributor.corporatename | Universidad Santo Tomás | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000464252 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000744719 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000260010 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?hl=es&user=VGWRvDEAAAAJ | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?hl=es&user=yCBpLUsAAAAJ | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-0572-8418 | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-5331-5693 | spa |
dc.contributor.orcid | https://orcid.org/0000-0002-6477-9872 | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2022-07-16T16:30:32Z | |
dc.date.available | 2022-07-16T16:30:32Z | |
dc.date.issued | 2022 | |
dc.description | La capacidad autorregenerativa de las células madre es una de sus principales propiedades, la cual ha sido utilizada en procesos de regeneración celular, ya sea para reemplazo o para recuperación celular de tejidos y órganos. Estas células también tienen la habilidad de producir diferentes compuestos farmacológicos y toxicológicos. Así mismo, gracias a sus propiedades antiinflamatorias, antifibróticas regenerativas y antimicrobianas, se sitúan como un recurso biológico interesante. El objetivo de este libro es profundizar en los procesos moleculares y celulares de las células madre y mostrar sus diferentes usos biotecnológicos. | spa |
dc.format.extent | 1-127 | spa |
dc.identifier.citation | Sánchez, R., Arévalo, G., & Ostos, O. (2022). Células madre y su aplicación biotecnológica. Ediciones USTA. | spa |
dc.identifier.doi | https://doi.org/10.15332/li.lib.2022.00280 | |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.isbn | 9789587824995 | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.uri | http://hdl.handle.net/11634/45876 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.program | Producción Editorial | spa |
dc.relation.references | Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I. y Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantatio, 6(2), 230-247. https://doi.org/10.1097/00007890-196803000-00009 | spa |
dc.relation.references | Hao, J., Ma, A., Wang, L., Cao, J., Chen, S., Wang, L., Fu, B., Zhou, J., Pei, X., Zhang, Y., Xiang, P., Hu, S., Li, Q., Zhang, Y., Xia, Y., Zhu, H., Stacey, G., Zhou, Q. y Zhao, T. (2020). General requirements for stem cells. Cell Prolif., 53(12), e12926. https://doi.org/10.1111/cpr.12926 | spa |
dc.relation.references | Khan, F. A., Almohazey, D., Alomari, M. y Almofty, S. A. (2018). Isolation, culture, and functional characterization of human embryonic stem cells: current trends and challenges. Stem Cells International. https://doi.org/10.1155/2018/1429351 | spa |
dc.relation.references | Mata-Miranda, M., Vázquez-Zapién, G. J. y Sánchez-Monroy, V. (2013). Generalidades y aplicaciones de las células madre. Perinatol. Reprod. Hum., 27(3), 194-199. | spa |
dc.relation.references | Sart, S. y Agathos, S. N. (2018). Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Molecular Biotechnology, 60(11), 843-861. https://doi.org/10.1007/s12033-018-0113-4 | spa |
dc.relation.references | Schmidt, S., Lilienkampf, A. y Bradley, M. (2018). New substrates for stem cell control. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 373(1750). https://doi.org/10.1098/rstb.2017.0223 | spa |
dc.relation.references | Arbósa, A., Nicolau, F., Quetglas, M., Ramis, J. M., Monjo, M., Muncunill, J., Calvo, J. y Gayà, A. (2013). Obtención de células madre mesenquimales a partir de cordones umbilicales procedentes de un programa altruista de donación de sangre de cordón. Inmunología, 32(1), 3-11. https://doi. org/10.1016/j.inmuno.2012.11.002 | spa |
dc.relation.references | Bao, M., Xie, J. y Huck, W. T. S. (2018). Recent advances in engineering the stem cell microniche in 3D. Advanced Science, 5(8), 1800448. https:// doi.org/10.1002/advs.201800448 | spa |
dc.relation.references | Bartfeld, S. y Clevers, H. (2017). Stem cell-derived organoids and their application for medical research and patient treatment. Journal of Molecular Medicine, 95(7), 729-738. https://doi.org/10.1007/s00109-017-1531-7 | spa |
dc.relation.references | Brizuela, C., Galleguillos, S., Carrión, F., Cabrera, C., Luz, P. e Inostroza, C. (2013). Aislamiento y caracterización de células madre mesenquimales de pulpa y folículo dental humano. Int. J. Morphol., 31(2), 739-746. https:// doi.org/10.4067/S0717-95022013000200063 | spa |
dc.relation.references | Centeno, E. G. Z., Cimarosti, H. y Bithell, A. (2018). 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration, 13(1), 27. https://doi. org/10.1186/s13024-018-0258-4 | spa |
dc.relation.references | Donnelly, H., Salmeron-Sanchez, M. y Dalby, M. J. (2018). Designing stem cell niches for differentiation and self-renewal. Journal of the Royal Society Interface, 15(145). https://doi.org/10.1098/rsif.2018.0388 | spa |
dc.relation.references | Eto, S., Goto, M., Soga, M., Kaneko, Y., Uehara, Y., Mizuta, H. y Era, T. (2018). Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. Plos One, 13(7), e0200790. https://doi.org/10.1371/journal.pone.0200790 | spa |
dc.relation.references | Ho, B. X., Pek, N. M. Q. y Soh, B. S. (2018). Disease modeling using 3D organoids derived from human induced pluripotent stem cells. International Journal of Molecular Sciences, 19(4), 936. https://doi.org/10.3390/ijms19040936 | spa |
dc.relation.references | Jun, D. Y., Kim, S. Y., Na, J. C., Lee, H. H., Kim, J., Yoon, Y. E, Hong, S. J. y Han, W. K. (2018). Tubular organotypic culture model of human kidney. Plos One, 13(10), e0206447. https://doi.org/10.1371/journal.pone.0206447 | spa |
dc.relation.references | Liu, Z., Tang, M., Zhao, J., Chai, R. y Kang, J. (2018). Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. Advanced Materials, 30(17), e1705388. https://doi.org/10.1002/adma.201705388 | spa |
dc.relation.references | Mizukami, A. y Swiech, K. (2018). Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization. Stem Cells International. https://doi.org/10.1155/2018/4083921 | spa |
dc.relation.references | Osiecki, M. J., Michl, T. D., Kul Babur, B., Kabiri, M., Atkinson, K., Lott, W. B., Griesser H, J. y Doran, M. R. (2015). Packed bed bioreactor for the isolation and expansion of placental-derived mesenchymal stromal cells. Plos One, 10(12), e0144941. https://doi.org/10.1371/journal.pone.0144941 | spa |
dc.relation.references | Paim, A., Tessaro, I. C., Cardozo, N. S. M. y Pranke, P. (2018). Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. Journal of Biological Physics, 44(3), 245-271. https://doi.org/10.1007/s10867-018-9482-y | spa |
dc.relation.references | Perez-Estenaga, I., Prosper, F. y Pelacho, B. (2018). Allogeneic mesenchymal stem cells and biomaterials: the perfect match for cardiac repair? International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103236 | spa |
dc.relation.references | Petry, F., Smith, J. R., Leber, J., Salzig, D., Czermak, P. y Weiss, M. L. (2016). Manufacturing of human umbilical cord mesenchymal stromal cells on microcarriers in a dynamic system for clinical use. Stem Cells Int. https://doi.org/10.1155/2016/4834616 | spa |
dc.relation.references | Petry, F., Weidner, T., Czermak, P. y Salzig, D. (2018). Three-dimensional bioreactor technologies for the cocultivation of human mesenchymal stem/ stromal cells and beta cells. Stem Cells Int. https://doi.org/10.1155/2018/2547098 | spa |
dc.relation.references | Sane, M. S., Misra, N., Mousa, O. M., Czop, S., Tang, H., Khoo, L. T., Jones, C. D. y Mustafi, S. B. (2018). Cytokines in umbilical cord blood-derived cellular product: a mechanistic insight into bone repair. Regenerative Medicine, 13(8), 881-898. https://doi.org/10.2217/rme-2018-0102 | spa |
dc.relation.references | Sart, S. y Agathos, S. N. (2018). Towards three-dimensional dynamic regulation and in situ characterization of single stem cell phenotype using microfluidics. Molecular Biotechnology, 60(11), 843-861. https://doi.org/10.1007/s12033-018-0113-4 | spa |
dc.relation.references | Cable, J., Fuchs, E., Weissman, I., Jasper, H., Glass, D., Rando, T. A., Blau, H., Debnath, S., Oliva, A., Park, S., Passegué, E., Kim, C. y Krasnow, M. A. (2020). Adult stem cells and regenerative medicine: a symposium report. Ann N Y Acad Sci., 1462(1), 27-36. https://doi.org/10.1111/nyas.14243 | spa |
dc.relation.references | Hawsawi, Y. M., Al-Zahrani, F., Mavromatis, C. H., Baghdadi, M. A., Saggu, S. y Oyouni, A. A. A. (2018). Stem cell applications for treatment of cancer and autoimmune diseases: its promises, obstacles, and future perspectives. Technology in Cancer Research & Treatment, 17. https://doi.org/10.1177/1533033818806910 | spa |
dc.relation.references | Labusca, L., Herea, D. D. y Mashayekhi, K. (2018). Stem Cells as Delivery Vehicles for Regenerative Medicine: Challenges and Perspectives. World Journal of Stem Cells, 10(5), 43-56. https://doi.org/10.4252/wjsc.v10.i5.43 | spa |
dc.relation.references | Liu, G., David, B. T., Trawczynski, M. y Fessler, R. G. (2020). Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep., 16(1), 3-32. https://doi.org/10.1007/s12015-019-09935-x | spa |
dc.relation.references | Mata-Miranda, M., Vázquez-Zapién, G. J. y Sánchez-Monroy, V. (2013). Generalidades y aplicaciones de las células madre. Perinatol. Reprod. Hum., 27(3), 194-199. | spa |
dc.relation.references | Ntege, E. H., Sunami, H. y Shimizu, Y. (2020). Advances in regenerative therapy: A review of the literature and future directions. Regen Ther, 14, 136-153. https://doi.org/10.1016/j.reth.2020.01.004 | spa |
dc.relation.references | Perez-Estenaga, I., Prosper, F. y Pelacho, B. (2018). Allogeneic Mesenchymal Stem Cells and Biomaterials: The Perfect Match for Cardiac Repair? International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ ijms19103236 | spa |
dc.relation.references | Serna-Cuéllar, E. y Santamaría-Solís, L. (2013). Protocol of extraction and processing of adult stem cells from abdominal adipose tissue: coordenates of the plastic surgeon in translational researching. Cir. Plást. Iberolatinoam., 39(Supl. 1), s44-s50. https://doi.org/10.4321/S0376-78922013000500012 | spa |
dc.relation.references | Serra, M., Brito, C., Correia, C. y Alves, P. M. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 30(6), 350-359. https://doi.org/10.1016/j.tibtech.2012.03.003 | spa |
dc.relation.references | Slack, J. M. W. (2018). What is a stem cell? Wiley interdisciplinary Reviews De- velopmental biology, 7(5), e323. https://doi.org/10.1002/wdev.323 | spa |
dc.relation.references | Ude, C. C., Miskon, A., Idrus, R. B. H. y Abu Bakar, M. B. (2018). Application of stem cells in tissue engineering for defense medicine. Military Medical Research, 5(1), 7. https://doi.org/10.1186/s40779-018-0154-9 | spa |
dc.relation.references | Ullah, I., Subbarao, R. B. y Rho, G. J. (2015). Human mesenchymal stem cells: current trends and future prospective. Bioscience Reports, 35(2). https:// doi.org/10.1042/BSR20150025 | spa |
dc.relation.references | Wang, B. X., Kit-Anan, W. y Terracciano, CM. N. (2018). Many cells make life work. Multicellularity in stem cell-based cardiac disease modelling. International Journal of Molecular Sciences, 19(11), 3361. https://doi. org/10.3390/ijms19113361 | spa |
dc.relation.references | Zhu, Y. e Yi, Y. (2017). Research progress and clinical prospect of three-dimensional spheroid culture of mesenchymal stem cells. Chinese Journal of Reparative and Reconstructive Surgery, 31(4), 497-503. https://doi. org/10.7507/1002-1892.201612056 | spa |
dc.relation.references | Jenkins, M. J. y Farid, S. S. (2015). Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnology Journal, 10(1), 83-95. https://doi.org/10.1002/ biot.201400348 | spa |
dc.relation.references | Gamble, A., Pawlick, R., Pepper, A. R., Bruni, A., Adesida, A., Senior, P. A., Korbutt, G. S. y Shapiro. A. M. J. (2018). Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. Plos One, 13(11), e0206449. https://doi.org/10.1371/journal.pone.0206449 | spa |
dc.relation.references | Guo, G. R., Chen, L., Rao, M., Chen, K., Song, J. P. y Hu, S. S. (2018). A modified method for isolation of human cardiomyocytes to model cardiac diseases. Journal of Translational Medicine, 16, 288. https://doi. org/10.1186/s12967-018-1649-6 | spa |
dc.relation.references | Hassan, S., Simaria, A. S., Varadaraju, H., Gupta, S., Warren, K. y Farid, S. S. (2015). Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Regenerative Medicine, 10(5), 591- 609. https://doi.org/10.2217/rme.15.29 | spa |
dc.relation.references | Jossen, V., van den Bos, C., Eibl, R. y Eibl, D. (2018). Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Applied Microbiology and Biotechnology, 102(9), 3981-3994. https:// doi.org/10.1007/s00253-018-8912-x | spa |
dc.relation.references | Kim, S., Lee, S. K., Kim, H. y Kim, T. M. (2018). Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103119 | spa |
dc.relation.references | Klar, A. S., Zimoch, J. y Biedermann, T. (2017). Skin tissue engineering: application of adipose-derived stem cells. BioMed Research International. https:// doi.org/10.1155/2017/9747010 | spa |
dc.relation.references | Lee, J., Cho, Y. S., Jung, H. y Choi, I. (2018). Pharmacological regulation of oxidative stress in stem cells. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/4081890 | spa |
dc.relation.references | Lin, H., Du, Q., Li, Q., Wang, O., Wang, Z., Sahu, N., Elowsky, C., Liu, K., Zhang, C., Chung, S., Duan, B. y Lei, Y. (2018). A scalable and efficient bioprocess for manufacturing human pluripotent stem cell-de- rived endothelial cells. Stem Cell Reports, 11(2), 454-469. https://doi.org/10.1016/j.stemcr.2018.07.001 | spa |
dc.relation.references | Placzek, M. R., Chung, I. M., Macedo, H. M., Ismail, S., Mortera Blanco, T., Lim, M., Jae, M. C., Iliana, F., Yunyi, K., Yeo, D. C. L., Ma Chi, Y. C., Polak, J. M., Panoskaltsis, N. y Mantalaris, A. (2009). Stem cell bioprocessing: fundamentals and principles. Journal of the Royal Society Interface, 6(32), 209-232. https://doi.org/10.1098/rsif.2008.0442 | spa |
dc.relation.references | Shyh-Chang, N., Daley, G. Q. y Cantley, L. C. (2013). Stem cell metabolism in tissue development and aging. Development, 140(12), 2535-2547. https://doi.org/10.1242/dev.091777 | spa |
dc.relation.references | Silva, M. M., Rodrigues, A. F., Correia, C., Sousa, M. F., Brito, C., Coroadinha, A. S., Serra, M. y Alves, P. M. (2015). Robust expansion of human pluripotent stem cells: integration of bioprocess design with transcriptomic and metabolomic characterization. Stem Cells Translational Medicine, 4(7), 731-742. https://doi.org/10.5966/sctm.2014-0270 | spa |
dc.relation.references | Sui, L., Danzl, N., Campbell, S. R., Viola, R., Williams, D., Xing, Y., Wang, Y., Phillips, N., Poffenberger, G., Johannesson, B., Oberholzer, J., Powers, A. C., Leibel, R. L., Chen, X., Sykes, M. y Egli, D. (2018). β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes, 67(1), 26-35. https://doi.org/10.2337/db17-0120 | spa |
dc.relation.uri | https://ediciones.usta.edu.co/index.php/publicaciones/ciencias-sociales/c%C3%A9lulas-madre-y-su-aplicaci%C3%B3n-biotecnol%C3%B3gica-detail | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.subject.keyword | Mother cells | spa |
dc.subject.keyword | hematopoietic stem cells | spa |
dc.subject.keyword | Regenerative medicine | spa |
dc.subject.lemb | Células madre | spa |
dc.subject.lemb | Células madre hematopoyéticas | spa |
dc.subject.lemb | Medicina regenerativa | spa |
dc.title | Células madre y su aplicación biotecnológica | spa |
dc.type.category | Generación de Nuevo Conocimiento: Libro resultado de investigación | spa |
dc.type.drive | info:eu-repo/semantics/book | |
dc.type.local | Libro | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Obracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdf
- Tamaño:
- 7.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: