Propuesta de Mejoramiento del Modelo de ML para el Sistema de Monitoreo y Seguridad Laboral en la Empresa SLB.

dc.contributor.advisorMancera Lagos, Pedro Alejandro
dc.contributor.authorMelo Tayo, Camilo Andres
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000068920spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001695594spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es&user=tI2C-ioAAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0001-8546-5058spa
dc.contributor.orcidhttps://orcid.org/0000-0002-6063-5265spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2024-10-02T15:36:50Z
dc.date.available2024-10-02T15:36:50Z
dc.date.issued2024
dc.descriptionEsta monografía surge como resultado de un trabajo de investigación realizado en el marco de las prácticas profesionales desempeñadas en la empresa SLB (Schlumberger) entre el 5 de Julio de 2023 y el 5 de enero de 2024, en el que fue posible identificar un problema en la implementación por parte de dicha empresa del sistema de monitoreo y seguridad laboral basado en inteligencia artificial (IA) implementado con el propósito de enviar alertas de seguridad respecto de las personas que estén manipulando en indebida forma las herramientas o elementos de seguridad suministrados por la compañía. La investigación se llevó a cabo "in situ", aprovechando el conocimiento adquirido durante la práctica profesional desarrollada dentro de la empresa, la cual, permitió identificar los desafíos específicos que enfrenta la compañía en la implementación del referido sistema. La propuesta presentada en este trabajo se centra en la optimización del sistema mencionado anteriormente, mediante la implementación de herramientas en la nube de Google Cloud Platform (GCP), para lo cual, se abordan los problemas identificados a través del análisis de soluciones y se plantea una propuesta que combina tecnologías de vanguardia como el modelo YOLO y técnicas de reentrenamiento con la base de datos COCO (Common Objects in Context) y data sets personalizados, junto con la infraestructura escalable y confiable de GCP.spa
dc.description.abstractThis monograph arises as a result of a research work carried out within the framework of the professional practices performed in the company SLB (Schlumberger) between July 5, 2023 and January 5, 2024, in which it was possible to identify a problem in the implementation by the company of the monitoring and work safety system based on artificial intelligence (AI) implemented for the purpose of sending safety alerts regarding people who are improperly manipulating the tools or safety elements supplied by the company. The research was carried out “in situ”, taking advantage of the knowledge acquired during the professional practice developed within the company, which allowed to identify the specific challenges faced by the company in the implementation of the referred system. The proposal presented in this work focuses on the optimization of the aforementioned system, through the implementation of tools in the Google Cloud Platform (GCP) cloud, for which, the problems identified through the analysis of solutions are addressed and a proposal that combines cutting-edge technologies such as the YOLO model and retraining techniques with the COCO (Common Objects in Context) database and customized data sets, along with the scalable and reliable infrastructure of GCP is proposed.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero de Telecomunicacionesspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMelo Tayo, C. A. (2024). Propuesta de Mejoramiento del Modelo de ML para el Sistema de Monitoreo y Seguridad Laboral en la Empresa SLB. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/58083
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería de Telecomunicacionesspa
dc.publisher.programPregrado Ingeniería de Telecomunicacionesspa
dc.relation.references“Compute Engine | Google Cloud.” Accessed: Jun. 08, 2024. [Online]. Available: https://cloud.google.com/products/compute?hl=es_419spa
dc.relation.references“Cloud Storage | Google Cloud.” Accessed: Jun. 08, 2024. [Online]. Available: https://cloud.google.com/storagespa
dc.relation.references“Google Kubernetes Engine (GKE) | Google Cloud.” Accessed: Jun. 08, 2024. [Online]. Available: https://cloud.google.com/kubernetes-engine?hl=es_419spa
dc.relation.references“¿Qué es Pub/Sub? | Pub/Sub Documentation | Google Cloud.” Accessed: Jun. 08, 2024. [Online]. Available: https://cloud.google.com/pubsub/docs/overview?hl=es-419spa
dc.relation.references“Servicios de informática en la nube | Microsoft Azure.” Accessed: Jul. 22, 2024. [Online]. Available: https://azure.microsoft.com/es-mxspa
dc.relation.references“¿Qué son los servidores en la nube?: Explicación sobre los servidores en la nube: AWS.” Accessed: May 21, 2024. [Online]. Available: https://aws.amazon.com/es/what-is/cloud-server/spa
dc.relation.references“Modelos de servicio en la nube | Tipos de cloud computing | AWS.” Accessed: May 21, 2024. [Online]. Available: https://aws.amazon.com/es/types-of-cloud-computing/spa
dc.relation.references“Documentation | Apache Airflow.” Accessed: Jun. 08, 2024. [Online]. Available: https://airflow.apache.org/docs/spa
dc.relation.references“Jenkins.” Accessed: Jun. 19, 2024. [Online]. Available: https://www.jenkins.io/spa
dc.relation.references“Terraform by HashiCorp.” Accessed: Jun. 08, 2024. [Online]. Available: https://www.terraform.io/spa
dc.relation.references“Identity and Access Management | IAM | Google Cloud.” Accessed: Jul. 22, 2024. [Online]. Available: https://cloud.google.com/security/products/iam?hl=es-419spa
dc.relation.references“Identity-Aware Proxy (IAP) | Google Cloud.” Accessed: Jul. 22, 2024. [Online]. Available: https://cloud.google.com/security/products/iap?hl=es_419spa
dc.relation.references“6 Regularización | Machine Learning: Teoría y Práctica.” Accessed: May 21, 2024. [Online]. Available: https://bookdown.org/victor_morales/TecnicasML/regularizaci%C3%B3n.htmlspa
dc.relation.references“¿Qué es el aprendizaje supervisado? | IBM.” Accessed: May 21, 2024. [Online]. Available: https://www.ibm.com/mx-es/topics/supervised-learningspa
dc.relation.references“¿Qué es el aprendizaje no supervisado? | IBM.” Accessed: May 21, 2024. [Online]. Available: https://www.ibm.com/mx-es/topics/unsupervised-learningspa
dc.relation.references“Aprendizaje por refuerzo y optimización - Expertos en IIC.” Accessed: May 21, 2024. [Online]. Available: https://www.iic.uam.es/inteligencia-artificial/aprendizaje-por-refuerzo/spa
dc.relation.referencesJ. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 779–788, Jun. 2015, doi: 10.1109/CVPR.2016.91.spa
dc.relation.referencesJ. S. D. R. G. A. F. Redmon, “(YOLO) You Only Look Once,” Cvpr, vol. 2016-December, pp. 779–788, Dec. 2016, doi: 10.1109/CVPR.2016.91.spa
dc.relation.referencesC. Ning, H. Zhou, Y. Song, and J. Tang, “Inception Single Shot MultiBox Detector for object detection,” 2017 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2017, pp. 549–554, Sep. 2017, doi: 10.1109/ICMEW.2017.8026312.spa
dc.relation.referencesR. I. H. Abushahma, M. A. M. Ali, O. I. Al-Sanjary, and N. M. Tahir, “Region-based convolutional neural network as object detection in images,” Proceeding - 2019 IEEE 7th Conference on Systems, Process and Control, ICSPC 2019, pp. 264–268, Dec. 2019, doi: 10.1109/ICSPC47137.2019.9068011.spa
dc.relation.referencesB. S. Reddy, A. Mallikarjuna Reddy, M. H. D. S. Sradda, T. Mounika, S. Mounika, and K. Meghana, “A Comparative Study on Object Detection Using Retinanet,” MysuruCon 2022 - 2022 IEEE 2nd Mysore Sub Section International Conference, 2022, doi: 10.1109/MYSURUCON55714.2022.9972742spa
dc.relation.referencesN. G. Camacho, “Unlocking the Potential of AI/ML in DevSecOps: Effective Strategies and Optimal Practices,” Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, vol. 2, no. 1, pp. 79–89, Mar. 2024, doi: 10.60087/JAIGS.V2I1.P89.spa
dc.relation.references“The Role Of Machine Learning In Autonomous Vehicles | AVs-report – Weights & Biases.” Accessed: Jul. 23, 2024. [Online]. Available: https://wandb.ai/ivangoncharov/AVs-report/reports/The-Role-Of-Machine-Learning-In-Autonomous-Vehicles--VmlldzoyNTExMDE3spa
dc.relation.references“The Role of Machine Learning in Health Care.” Accessed: Jul. 23, 2024. [Online]. Available: https://corporatelearning.hms.harvard.edu/blog/machine-learning-medicine-101-health-care-executivesspa
dc.relation.references“AI in Retail: How to Use Machine Learning in eCommerce | by Sandra Parker | Medium.” Accessed: Jul. 23, 2024. [Online]. Available: https://sandra-parker.medium.com/ai-in-retail-how-to-use-machine-learning-in-ecommerce-643ef10e24fdspa
dc.relation.referencesP. Tripathi, N. Kumar, M. Rai, P. K. Shukla, and K. N. Verma, “Applications of Machine Learning in Agriculture,” Smart Village Infrastructure and Sustainable Rural Communities, pp. 99–118, Jan. 2023, doi: 10.4018/978-1-6684-6418-2.CH006.spa
dc.relation.references“How Machine Learning Will Transform Supply Chain Management.” Accessed: Jul. 23, 2024. [Online]. Available: https://hbr.org/2024/03/how-machine-learning-will-transform-supply-chain-managementspa
dc.relation.referencesS. Angra, B. Sharma, and K. D. Sharma, “Amalgamation of Virtual Reality, Augmented Reality and Machine Learning: A Review,” 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022, pp. 2601–2604, 2022, doi: 10.1109/ICACITE53722.2022.9823716.spa
dc.relation.references“Batch vs. Real-Time Machine Learning: Understanding the Processing Powerhouse and the Speedy Predictor | by Sanjay Kumar | Medium.” Accessed: Jul. 23, 2024. [Online]. Available: https://medium.com/@Sanjaynk7907/batch-vs-real-time-machine-learning-understanding-the-processing-powerhouse-and-the-speedy-bb7f962b9be6spa
dc.relation.references“Scalability in Machine Learning Systems: Challenges, Strategies, and Best Practices | by amirsina torfi | Medium.” Accessed: Jul. 23, 2024. [Online]. Available: https://medium.com/@amirsina.torfi/scalability-in-machine-learning-systems-challenges-strategies-and-best-practices-231cc2fb2889spa
dc.relation.references“Understanding the Scope and Limitations of Machine Learning | by Pulkit | Medium.” Accessed: Jul. 23, 2024. [Online]. Available: https://medium.com/@itspulkit37/understanding-the-scope-and-limitations-of-machine-learning-d5e2c734b68espa
dc.relation.references“División de datos - Amazon Machine Learning.” Accessed: Jul. 23, 2024. [Online]. Available: https://docs.aws.amazon.com/es_es/machine-learning/latest/dg/splitting-types.htmlspa
dc.relation.references“Data Augmentation – Towards Data Science.” Accessed: May 21, 2024. [Online]. Available: https://towardsdatascience.com/tagged/data-augmentationspa
dc.relation.references“Data augmentation | TensorFlow Core.” Accessed: May 21, 2024. [Online]. Available: https://www.tensorflow.org/tutorials/images/data_augmentationspa
dc.relation.references“What is transfer learning? | IBM.” Accessed: May 21, 2024. [Online]. Available: https://www.ibm.com/topics/transfer-learning?mhsrc=ibmsearch_a&mhq=transfer%20learningspa
dc.relation.references“What is Fine-Tuning? | IBM.” Accessed: May 21, 2024. [Online]. Available: https://www.ibm.com/topics/fine-tuningspa
dc.relation.references“¿Cuál es la diferencia entre PaaS, IaaS y SaaS? | Google Cloud | Google Cloud.” Accessed: May 27, 2024. [Online]. Available: https://cloud.google.com/learn/paas-vs-iaas-vs-saas?hl=es-419spa
dc.relation.references“Making AI helpful for everyone - Google AI – Google AI.” Accessed: Jun. 08, 2024. [Online]. Available: https://ai.google/spa
dc.relation.references“Cloud Functions | Google Cloud.” Accessed: Jun. 08, 2024. [Online]. Available: https://cloud.google.com/functions?hl=es_419spa
dc.relation.references“Cloud SQL para MySQL, PostgreSQL y SQL Server | Google Cloud.” Accessed: Jun. 08, 2024. [Online]. Available: https://cloud.google.com/sql?hl=es_419spa
dc.relation.references“BigQuery: Almacén de datos empresarial | Google Cloud.” Accessed: Jun. 08, 2024. [Online]. Available: https://cloud.google.com/bigquery?hl=es_419spa
dc.relation.references“API Documentation | TensorFlow v2.16.1.” Accessed: Jun. 08, 2024. [Online]. Available: https://www.tensorflow.org/api_docsspa
dc.relation.references“FAQ’S — PyTorch/Serve master documentation.” Accessed: Jun. 08, 2024. [Online]. Available: https://pytorch.org/serve/FAQs.htmlspa
dc.relation.references“COCO - Common Objects in Context.” Accessed: Jun. 08, 2024. [Online]. Available: https://cocodataset.org/#homespa
dc.relation.references“Ultralytics · GitHub.” Accessed: Jun. 08, 2024. [Online]. Available: https://github.com/ultralyticsspa
dc.relation.references“CVAT.” Accessed: Jun. 08, 2024. [Online]. Available: https://www.cvat.ai/spa
dc.relation.references“Roboflow: Computer vision tools for developers and enterprises.” Accessed: Jun. 08, 2024. [Online]. Available: https://roboflow.com/spa
dc.relation.references“Cloud AutoML Documentation | Google Cloud.” Accessed: Jun. 08, 2024. [Online]. Available: https://cloud.google.com/automl/docs?hl=es-419spa
dc.relation.references“Hyperparameter optimization - Wikipedia.” Accessed: Jun. 08, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Hyperparameter_optimizationspa
dc.relation.references“Albumentations: fast and flexible image augmentations.” Accessed: Jun. 19, 2024. [Online]. Available: https://albumentations.ai/spa
dc.relation.references“Apache Kafka.” Accessed: Jun. 19, 2024. [Online]. Available: https://kafka.apache.org/spa
dc.relation.references“Apache SparkTM - Unified Engine for large-scale data analytics.” Accessed: Jun. 19, 2024. [Online]. Available: https://spark.apache.org/spa
dc.relation.references“Apache Hadoop.” Accessed: Jun. 08, 2024. [Online]. Available: https://hadoop.apache.org/spa
dc.relation.references“Vault by HashiCorp.” Accessed: Jun. 19, 2024. [Online]. Available: https://www.vaultproject.io/spa
dc.relation.references“¿Cómo funciona SSL? | Certificados SSL y TLS | Cloudflare.” Accessed: Jun. 08, 2024. [Online]. Available: https://www.cloudflare.com/es-es/learning/ssl/how-does-ssl-work/spa
dc.relation.references“Prometheus - Monitoring system & time series database.” Accessed: Jun. 08, 2024. [Online]. Available: https://prometheus.io/spa
dc.relation.references“ELK Stack: Elasticsearch, Kibana, Beats y Logstash | Elastic.” Accessed: Jun. 19, 2024. [Online]. Available: https://www.elastic.co/es/elastic-stackspa
dc.relation.references“Docker: Accelerated Container Application Development.” Accessed: Jun. 19, 2024. [Online]. Available: https://www.docker.com/spa
dc.relation.references“Docker: Accelerated Container Application Development.” Accessed: Jun. 08, 2024. [Online]. Available: https://www.docker.com/spa
dc.relation.references“What is Jenkins? Why Use Continuous Integration (CI) Tool?” Accessed: Jun. 08, 2024. [Online]. Available: https://www.guru99.com/jenkin-continuous-integration.htmlspa
dc.relation.references“Overview - Spark 3.5.1 Documentation.” Accessed: Jun. 08, 2024. [Online]. Available: https://spark.apache.org/docs/3.5.1/spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordGCPspa
dc.subject.keywordIAspa
dc.subject.keywordCloudspa
dc.subject.keywordCCTVspa
dc.subject.keywordServersspa
dc.subject.lembIngeniería de Telecomunicacionesspa
dc.subject.lembPlan de Mejoraspa
dc.subject.lembPrácticas Profesionalesspa
dc.subject.lembEmpresa -- Monitoreospa
dc.subject.proposalGCPspa
dc.subject.proposalIAspa
dc.subject.proposalNubespa
dc.subject.proposalCCTVspa
dc.subject.proposalServidoresspa
dc.titlePropuesta de Mejoramiento del Modelo de ML para el Sistema de Monitoreo y Seguridad Laboral en la Empresa SLB.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de gradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2024cartadederechosdeautor.pdf
Tamaño:
887.74 KB
Formato:
Adobe Portable Document Format
Descripción:
Thumbnail USTA
Nombre:
2024cartadefacultad.pdf
Tamaño:
212.55 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
2024camiloandresmelotayo.pdf
Tamaño:
2.52 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: