Data-driven methodology to detect and classify structural changes under temperature variations

dc.contributor.authorAnaya, Maribelspa
dc.contributor.authorTibaduiza, Diego Aspa
dc.contributor.authorTorres-Arredondo, Miguel Aspa
dc.contributor.authorPozo, Francescspa
dc.contributor.authorRuiz, Magdaspa
dc.contributor.authorMujica, Luis Espa
dc.contributor.authorRodellar, Joséspa
dc.contributor.authorFritzen, Claus-Peterspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-01-21T13:06:28Zspa
dc.date.available2020-01-21T13:06:28Zspa
dc.date.issued2014-02-28spa
dc.description.abstractThis paper presents a methodology for the detection and classification of structural changes under different temperature scenarios using a statistical data-driven modelling approach by means of a distributed piezoelectric active sensor network at different actuation phases. An initial baseline pattern for each actuation phase for the healthy structure is built by applying multiway principal component analysis (MPCA) to wavelet approximation coefficients calculated using the discrete wavelet transform (DWT) from ultrasonic signals which are collected during several experiments. In addition, experiments are performed with the structure in different states (simulated damages), pre-processed and projected into the different baseline patterns for each actuator. Some of these projections and squared prediction errors (SPE) are used as input feature vectors to a self-organizing map (SOM), which is trained and validated in order to build a final pattern with the aim of providing an insight into the classified states. The methodology is tested using ultrasonic signals collected from an aluminium plate and a stiffened composite panel. Results show that all the simulated states are successfully classified no matter what the kind of damage or the temperature is in both structures.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1088/0964-1726/23/4/045006spa
dc.identifier.urihttp://hdl.handle.net/11634/20893
dc.relation.referencesRytter A 1993 Vibration based inspection of Civil Engineering Structures PhD Thesis Aalborg University Denmarkspa
dc.relation.referencesOverly T, Park G, Farinholt K and Farrar C 2009 Piezoelectric active-sensor diagnostics and validation using instantaneous baseline data IEEE Sensor J. 9 1414–21spa
dc.relation.referencesTibaduiza D A 2013 Design and validation of a structural health monitoring system for aeronautical structures PhD Thesis Universitat Politecnica de Catalunyaspa
dc.relation.referencesSohn H 2007 Effects of environmental and operational variability on structural health monitoring Phil. Trans. R. Soc. A 365 539–60spa
dc.relation.referencesDodson J C and Inman D J 2013 Thermal sensitivity of Lamb waves for structural health monitoring applications Ultrasonics 53 677–85spa
dc.relation.referencesJolliffe I T 2002 Principal Component Analysis (Springer Series in Statistics) (Berlin: Springer)spa
dc.relation.referencesMujica L E, Rodellar J, Fernandez A and Guemes A 2011 ¨ Q-statistic and T 2 -statistic PCA based measures for damage assessment in structures Struct. Health Monitoring 10 539–53spa
dc.relation.referencesAlcala C F and Qin S J 2009 Unified analysis of diagnosis methods for process monitoring Proc. 7th IFAC Symp. Fault Detection, Supervision and Safety of Technical Process (Barcelona) pp 1007–12spa
dc.relation.referencesLi G, Qin S J, Ji Y and Zhou D 2009 Reconstruction based fault prognosis for continuous processes Proc. 7th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Process (Barcelona) pp 1019–24spa
dc.relation.referencesTibaduiza D A, Mujica L E and Rodellar J 2011 Comparison of several methods for damage localization using indices and contributions based on PCA J. Phys.: Conf. Ser. 305 012013spa
dc.relation.referencesKohonen T 1990 The self-organizing maps Proc. IEEE 78 1464–80spa
dc.relation.referencesTorres Arredondo M A, Buethe I, Tibaduiza D A, Rodellar J and Fritzen C-P 2012 Damage detection and classification in pipework using acousto-ultrasonics and probabilistic non-linear modelling CSHM-4: Civil Structural Health Monitoring Workshop (on CD-ROM)spa
dc.relation.referencesKohonen T and Honkela T 2007 Kohonen network Scholarpedia 2 1568 (http://www.scholarpedia.org/article/ Kohonen network)spa
dc.relation.referencesWorden K, Staszewski W J and Hensman J J 2011 Natural computing for mechanical systems research: a tutorial overview Mech. Syst. Signal Process. 25 4–111spa
dc.relation.referencesMallat S G 1989 A theory for multiresolution signal decomposition: the wavelet representation IEEE Trans. Pattern Analysis Machine Intell. 11 674–93spa
dc.relation.referencesCoifman R R and Wickerhauser M V 1992 Entropy-based algorithms for best basis selection IEEE Trans. Inform. Theory 38 713–8spa
dc.relation.referencesMallat S 1997 A Wavelet Tour of Signal Processing 2 edn (San Diego, CA: Academic) ISBN 0-470-22153-4spa
dc.relation.referencesNewland D E 1993 Random Vibration, Spectral and Wavelet Analysis (New York: Longman, Harlow and John Wiley)spa
dc.relation.referencesTibaduiza D A, Mujica L E and Rodellar J 2012 Damage classification in structural health monitoring using principal component analysis and self-organizing maps Struct. Control Health Monit 20 1303–16spa
dc.relation.referencesWold S, Geladi P, Esbensen K and Ohman J 1987 Multiway principal component and PLS analysis J. Chemomet. 1 41–56spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordDamage classificationspa
dc.subject.keywordDamage indexspa
dc.subject.keywordDiscrete wavelet transform (DWT)spa
dc.subject.keywordPrincipal component analysis (PCA)spa
dc.subject.keywordSelf-organizing maps (SOM)spa
dc.subject.keywordStructural health monitoring (SHM)spa
dc.subject.keywordTemperature effectsspa
dc.titleData-driven methodology to detect and classify structural changes under temperature variationsspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Data-driven methodology to detect and classify structural changes under temperature variations.pdf
Tamaño:
5.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: