Sacarificación de residuos lignocelulósicos pretratados con peróxido de hidrógeno para la obtención de azúcares fermentables
dc.contributor.advisor | Bayona Ayala, Olga Lucia | spa |
dc.contributor.advisor | Alvarado Rueda, Lizeth Johanna | spa |
dc.contributor.author | Vergara Menco, Manuel Antonio | spa |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2021-02-11T15:05:09Z | spa |
dc.date.available | 2021-02-11T15:05:09Z | spa |
dc.date.issued | 2021-02-10 | spa |
dc.description | En el mundo hay un gran consumo y dependencia de los combustibles fósiles, a pesar del gran daño ambiental que estos causan, por ello, en los últimos años se ha venido explorando fuentes alternativas de energía, que sean más amigables con el medio ambiente como son los combustibles líquidos de origen biológico o biocombustibles. En esta investigación se evaluó la conversión de azúcares fermentables para la producción de etanol de segunda generación a partir de biomasas lignocelulósicas evaluando tres variables en la etapa de la hidrólisis enzimática. (porcentaje de sólidos, carga enzimática y tamaño de partícula) mediante el uso de un diseño de experimentos 23 con triplicado en el punto central usando el análisis de superficie de respuesta en la cual se observó las variables más significativas en la etapa de hidrólisis enzimática fueron, porcentaje de sólidos y carga enzimática ya que presentaron valores de p ˂ 0,05 en rango de estudio al 95% de confianza, y se encontró que gracias al pretratamiento con peróxido de hidrogeno la recalcitrancia del material lignocelulósico disminuyó significativamente. | spa |
dc.description.abstract | In the world there is a great consumption and dependency on fossil fuels, despite the great environmental damage that these causes, therefore, in recent years, alternative energy sources have been explored, which are more friendly to the environment such as liquid fuels of biological origin or biofuels. In this research, the conversion of fermentable sugars for the production of second generation ethanol from lignocellulosic biomasses was evaluated by evaluating three variables in the enzymatic hydrolysis stage. (percentage of solids, enzymatic charge and particle size) by using an experiment design 23 with triplicate in the central point using the response surface analysis in which the most significant variables in the enzymatic hydrolysis stage were observed were , percentage of solids and enzyme load since they presented values of p ˂ 0.05 in the study range at 95% confidence, and it was found that due to pretreatment with hydrogen peroxide, the recalcitrance of the lignocellulosic material decreased significantly. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Químico Ambiental | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Vergara Menco, M. A. (2021). Sacarificación de residuos lignocelulósicos pretratados con peróxido de hidrógeno para la obtención de azúcares fermentables. [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/32079 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Química Ambiental | spa |
dc.publisher.program | Pregrado Química Ambiental | spa |
dc.relation.references | Abels, C., Carstensen, F., & Wessling, M. (2013). Membrane processes in biorefinery applications. Journal of Membrane Science, 285-317. | spa |
dc.relation.references | Agency, I. E. (2019). The latest trends in energy and emissions in 2018. París (Francia): Global Energy y CO2 Status Report. | spa |
dc.relation.references | Aguiar, M. L. (2010). Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Brazilian archives of biology and technology an international journal, 1245-1254. | spa |
dc.relation.references | Ahmadi, F. Z. (2016). Pre-treatment of sugarcane bagasse with a combination of sodium hydroxide and lime for improving the ruminal degradability: optimization of process parameters using response surface methodology. ournal of Applied Animal Research, 287–296. | spa |
dc.relation.references | Almazán, O., Hernández, A., Brizuela, M., Carvajal, O., & Arias, G. (2013). El bagazo de la caña de azúcar, conocimiento y potencial. La Habana: ICIDCA. | spa |
dc.relation.references | Almergren, J. A. (2009). Quimiometría integral. Análisis de datos químicos y bioquímicos. Elsevier BV. | spa |
dc.relation.references | Alvira, P. T.-P. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol., 101, 4851–4861. | spa |
dc.relation.references | Amiri, H., Karimi, K., & Zilouei, H. (2014). Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology, 450-456. | spa |
dc.relation.references | Asocaña. (2016, Noviembre 14). Informe Anual 2016-2017. Cali: Impresiones Richard. | spa |
dc.relation.references | Asocaña. (2019, Febrero 07). Asocana.org. Retrieved from https://www.asocana.org/modules/documentos/2/234.aspx | spa |
dc.relation.references | Ayala, O. (2012). Avaliação de pré-tratamentos para a hidrólise enzimática de palha de cana-de-açúcar considerando a produção de etanol. . Faculdade de Engenheira Química, Universidade Estadual de Campinas, Brasil, Dissertação (Mestrado). | spa |
dc.relation.references | Banerjee, G. C., Liu, T., Williams, D., Meza, S., & Walton, J. (2012). Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, andethanolic fermentation. . Biotechnology and Bioengineering, 922–31. | spa |
dc.relation.references | Barakat, A. C. (2014). Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis. Applied Energy, 95-105. | spa |
dc.relation.references | Barros, R., Paredes, R., Endo, T., Bon, E., & Lee, S. (2013). Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresource Technology, 288–294. | spa |
dc.relation.references | Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and ustainable Energy Reviews, v. 36, 91- 106. | spa |
dc.relation.references | Binod, P. S. (2012). Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 109- 116. | spa |
dc.relation.references | Biocombustibles, F. c. (2019, Julio 02). Fedebiocombustibles.com. Retrieved from https://fedebiocombustibles.com/nota-web-id-2780.htm | spa |
dc.relation.references | Candido, R. G. (2012). Study of sugarcane bagasse pretreatment with sulfuric acid as a step of cellulose obtaining. World Academy of Science, Engineering and Technology, 6-10. | spa |
dc.relation.references | Carrier, M., Serani-Loppinet, A., Denux, D., Lasnier, J., Ham-Pichavant, F., Cansell, F., & Aymonier, C. (2011). Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass and Bioenergy, v. 35 , 298-307. | spa |
dc.relation.references | Carvalho, A. B. (2019). Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source. Bioresource Technology, 269-275. | spa |
dc.relation.references | Carvalho, D. Q. (2016). Assessment of alkaline pretreatmen for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Industrial Crops and Products, 932-941. | spa |
dc.relation.references | Castro, A. P. (2010.). Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Quimica Nova, v. 33, 181-188. | spa |
dc.relation.references | Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of bioseranl production. Renewablw and Sustainable Energy Reviews, v. 16, 1462-1476. | spa |
dc.relation.references | Conde-Mejía, C., Jiménez-Gutiérreza, A., & El-Halwagi, M. (2012.). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. . Process Safety and Environmental Protection, v. 90, 189-202. | spa |
dc.relation.references | Dehkhoda, A. (2008). Concentrating lignocellulosic hydrolysate by evaporation and its fermentation by repeated fedbatch using flocculating Saccharomyces cerevisiae. . Industrial Biotechnology Boras University and SEKAB E-Technology, Sweden, Dissertação (Mestrado). | spa |
dc.relation.references | Deng, F., Cheong, D., & Aita, G. (2018). Optimization of activated carbon detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by response surface methodology. ndustrial Crops and Products. Volume 115, 166-173. | spa |
dc.relation.references | Dias, M., Cunha, M., Jesus, C., Rocha, G., Pradella, J., Rossell, . . . Bonomi, A. (2011). Second generation ethanol in Brazil: Can it compete with electricity production? Bioresource Technology 102, 8964–8971. | spa |
dc.relation.references | Dias, M., Junqueira, T., Jesus, C., Rossell, C., R., M.-F., & Bonomi, A. (2012). Improving second generation ethanol production through optimization of first generation production process from sugarcane. Energy, v. 43, p. , 246-252. | spa |
dc.relation.references | Douglas, K. ( 2011). Potential Soil Quality Impact of Harvesting Crop Residues for Bioseranls. Agrociencia, 15, 120-127. | spa |
dc.relation.references | Durán, D., Figueroa, A., Gualdrón, M., & Sierra, R. (2018). Potential of tropical fruit waste in bioenergy processes and bioproducts design. European Biomass Conference and Exhibition Proceedings (pp. 166-174). Bogotá-Colombia: ETA-Florence Renewable Energies. | spa |
dc.relation.references | Eichler, P., Santos, F., Toledo, M., Zerbin, P., Schmitz, G., Alves, C., & Ries, L. &. (2015). Biomethanol production via gasification of lignocellulosic biomass. . Química Nova, 38, 828-835. | spa |
dc.relation.references | Fedebiocombustibles. (2019, Octuble 22). Fedebiocombustibles.com. Retrieved from http://www.fedebiocombustibles.com/v3/estadistica-produccion-tituloAlcohol_Carburante_(Etanol).htm | spa |
dc.relation.references | Franco, D. (2014). Caracterização física química das cinzas de palha de cana-de-açúcar através de análises térmicas simultâneas (STA). Brazil: UNICAMP. | spa |
dc.relation.references | García, C., Carmona, E., Caballero, A., Solarte, J., Martíneza, J., & Cardona, C. (2018). Fermentative Production of Ethanol Using Pinus patula as Raw Material: Economic and Energy Assessment. Waste and Biomass Valorization. | spa |
dc.relation.references | García-Cubero, M., González-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. . Bioresour. Technol. 100, , 1608–1613. | spa |
dc.relation.references | Gu, F., Wang, W., Jing, L., & Jin, Y. (2013). cts of green liquor pretreatment on the chemical composition and enzymatic digestibility of rice straw. Bioresource Technology 149 , 375–382. | spa |
dc.relation.references | Guilherme, A. D. (2017). Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose. Brazilian Journal of Chemical Engineering, 937 – 947. | spa |
dc.relation.references | Guo, T., He, A., Du, T., Zhu, D., Liang, D., Jiang, M., . . . Ouyang, P. (2013). Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitortolerance. Bioresource Technology 135 , 379–385. | spa |
dc.relation.references | Hamelinck, C., & Hooijdonk, G. &. (2005). Ethaol from lignocellulosic biomass: techno-economic performance in short, middle and long term. . Biomass & Bioenergy, 28, 384-410. | spa |
dc.relation.references | Harun, S., Balan, V., Takriffl, M., O., H., Jahim, J., & B., D. (2013). Performance of AFEX™ pretreated rice straw as source of fermentable sugars: the influence of particle size. . Biotechnology for Bioseranls, v. 6,, 40-57. | spa |
dc.relation.references | Hemansi., G. R. (2020). Hemansi, Gupta, R., Aswal, V. K., & Saini, J. K. (2019). Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: Insight from small angle neutron scattering (SANS). Renewable Energy, 2091-2101. | spa |
dc.relation.references | Ho, M., Onga, V., & Wu, T. (2019). Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review. Renewable and Sustainable Energy Reviews, 75–86. | spa |
dc.relation.references | Hu, F. R. (2012). Pretreatment and Lignocellulosic Chemistry. Bioenergy Research, 1043-1066. | spa |
dc.relation.references | Hu, F. R. (n.d.). Pretreatment and Lignocellulosic Chemistry | spa |
dc.relation.references | Jaimes, Y., & Aranzazu, F. (2010). Manejo de las enfermedades del cacao en Colombia, con énfasis en monilia. Corpoica, 25-27. | spa |
dc.relation.references | Jeoh, T. I. (2007). Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98 , 112-122. | spa |
dc.relation.references | JM., G. (1984). Alkaline peroxide delignification of agricultural residues to enhance saccharification. Biotechnol Bioeng , 46–52 | spa |
dc.relation.references | Karimi, K., Shafiei, M., & Kumar, R. (2013). Progreso en el pretratamiento físico y químico de la biomasa lignocelulósica. Bioresource Technology, 53-96. | spa |
dc.relation.references | Karp, S. W. (2013). Pretreatment strategies for delignification of sugarcane Bagasse : A review. Biocatalysis and Agricultural Biotechnology, 679-689. | spa |
dc.relation.references | Kim, H., & Choi, B. (2010). The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine. Renewable Energy , 157–163 | spa |
dc.relation.references | Kim, Y. H. (2009). Liquid hot water pretreatment of cellulosic biomass. Biofuels, Springer, 93-102. | spa |
dc.relation.references | Kumar, B. B. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology 199, 106-244. | spa |
dc.relation.references | Kumar, P., Barret, D., & Delwiche, M. e. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Bioseranl Production. . Industrial & Engineering Chemistry Research, v. 48, , 3713–3729. | spa |
dc.relation.references | Lalucea, C., Roldana, I., Pecorarob, E., Igbojionuc, L., & Ribeirod, C. (2019). Effects of pretreatment applied to sugarcane bagasse on composition and morphology of cellulosic fractions. Biomass and Bioenergy , 231–238. | spa |
dc.relation.references | Larabi, C., Maksoud, W., Szeto, K., Roubaud, A., Castelli, P., Santini, C., & Walter, J. (2013). Thermal decomposition of lignocellulosic biomass in the presence of acid catalysts. Bioresource Technology, 255–260. | spa |
dc.relation.references | Lee, D., Owens, V., Boe, A., & Jeranyama, P. (2007). Composition of herbaceous biomass feedstocks. . South Dakota State University Publication. | spa |
dc.relation.references | Li, J. L. (2018). Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: Chemical and microstructural analyses. Bioresource Technology, 1-7. | spa |
dc.relation.references | Lin, C., & Luque, R. &. ( 2014). Renewable Resources for Biorefineries. . Royal Society of Chemistry, 27, 116-120. | spa |
dc.relation.references | Linhares, W. (2019, Junio 19). Fedebiocombustible.Retrieved from https://www.fedebiocombustibles.com/nota-web-id-3158.htm | spa |
dc.relation.references | Ljungdahl, L. E. (1985). Ecology of microbial cellulose degradation. Adv. in Microb. Ecol, 237 - 299. | spa |
dc.relation.references | Luo, M., Tian, D., Shen, F., Hu, J., Zhang, Y., Yang, G., . . . Hu, Y. (2018). A comparative investigation of H2O2-involved pretreatments on lignocellulosic biomass for enzymatic hydrolysis. Biomass Conversion and Biorefinery. | spa |
dc.relation.references | Lynd, L., Cushman, J., & Nichols, R. &. (1991). Seranl Ethanol from Cellulosic Biomass. Science , 251, 1318-1323. | spa |
dc.relation.references | Maki, M., Leung, K., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass . International Journal of Biological Sciences, 500-516. | spa |
dc.relation.references | Martin, C., Alriksson, B., Sjose, A., Nilvebrant, N., & L., J. (2007). Dilute sulfuric acid pretreatment of agricultural and agroindustrial residues for ethanol production. . Applied Biochemistry and Biotechnology, v. 140, p. , 339–352. | spa |
dc.relation.references | McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46. | spa |
dc.relation.references | Mesa, L., González, E., Castro, E., Ruiz, E., Romero, I., & Cara, C. (2009). EVALUACIÓN DE COMPONENTES ACCESORIOS EN LA HIDRÓLISIS ENZIMÁTICADEL BAGAZO DE LA CAÑA DE AZÚCAR PRETRATADO PARA LA PRODUCCIÓN DE ETANOL. Revista Cubana de Química, vol. XXI,, 80-87. | spa |
dc.relation.references | Mira, J. C. (2019). Aspectos generales del sector agroindustrial de la caña. Informe Anual 2018 - 2019. Cali: Impresos Richard. | spa |
dc.relation.references | Mira, J., Carvajal, A., Calero, A., Vallecilla, S., Astudillo, C., Campos, A., . . . Chávez, C. (2017). Aspectos generales del sector de agroindustrial de la caña, Informe anual 2017-2018. Cali: Impresiones Richard. | spa |
dc.relation.references | Mira, J., Carvajal, A., Calero, A., Vallecilla, S., Astudillo, C., Campos, A., . . . Chávez, C. (2019). Aspectos generales del sector agroindustrial de la caña. Cali: Impresión Richard. | spa |
dc.relation.references | Mittal, A., Katahira, R., Donohoe, S., Black, B., Pattathil, S., Stringer, J., & Beckham, G. (2017). Alkaline Peroxide Delignification of Corn Stover. ACS Sustainable Chem. Eng, 6310−6321. | spa |
dc.relation.references | Mohammad, J., Taherzadeh, & Karimi., K. (2008). Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 1623. | spa |
dc.relation.references | Mok, W., & Antal, M. (1992). Uncatalyzed Solvolysis of Whole Biomass Hemicellulose by Hot Compressed Liquid Water. Ind. Eng. Chem, 1157-1161. | spa |
dc.relation.references | Mood, S., Golfeshan, A., Tabatabaei, M., Jouzani, G., Najafi, G., Gholami, M., & al., e. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. . Renew Sustain Energy Rev, 77–93. | spa |
dc.relation.references | Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., & Holtzapple, M. e. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, v. 96, 673- 686. | spa |
dc.relation.references | Motaunga, T., & Anandjiwalaa, R. (2015). Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Industrial Crops and Products 74, 472–477. | spa |
dc.relation.references | Neureiter, M., Danner, H., Thomasser, C., Saidi, B., & Braun, R. (2002). Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochemistry and Biotechnology, v.98/100, 49– 58. | spa |
dc.relation.references | officinarum, S. (2020, Enero 17). Retrieved from https://es.wikipedia.org/: https://es.wikipedia.org/wiki/Saccharum_officinarum#/media/Archivo:Saccharum_officinarum_B lanco1.18-cropped.jpg | spa |
dc.relation.references | Ogeda, T., & Petri, D. (2010). Hidrólise Enzimática de Biomassa. Quim. Nova, Vol. 33, No. 7, 1549- 1558. | spa |
dc.relation.references | Oladi, S., & Aita, G. (2018). Interactive effect of enzymes and surfactant on the cellulose digestibility of un-washed and washed dilute ammonia pretreated energy cane bagasse. Biomass and Bioenergy Volume 109, 221-230. | spa |
dc.relation.references | Oumer, A. H. (2018). Bio-based liquid fuels as a source of renewable energy: A review. Renewable and Sustainable Energy Reviews, 82-98. | spa |
dc.relation.references | Palonen, H., Thomsen, A., Tenkanen, M., Schmidt, A., & Viikari, L. (2004). Evaluation of wetoxidation pretreatment for enzymatic hydrolysis of softwood. . Appl Biochem. and biotechnol., 1-17. | spa |
dc.relation.references | Paszczyński, A., Crawford, R., & Blanchette, R. (1988). Delignification of Wood Chips and Pulps by Using Natural and Synthetic Porphyrins: Models of Fungal Decay. Applied and Enviromental Microbiology , 62-68. | spa |
dc.relation.references | Qi, B., Chen, X., & Wana, Y. (2010). Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresource Technology, v. 101, 4875-4883. | spa |
dc.relation.references | Rabelo, S. (2010). Avaliação e otimização de pré-tratamentos e hidrólise enzimática do bagaço de canade-açúcar para produção de etanol de segunda geração. . Faculda | spa |
dc.relation.references | Rabelo, S. A. (2014). Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis. Fuel, 349-357. | spa |
dc.relation.references | Rabelo, S. A. (2014). Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. ELSEVIER, 249-357. | spa |
dc.relation.references | Raele, R., Boaventura, J., F. A., & Sarturi, G. (2014). Scenarios for the second generation ethanol in Brazil. . Technological Forecasting & Social Change, 87, 205-223. | spa |
dc.relation.references | Ramos, F., Díaz, M., & Villar, M. (2016). Biocombustibles. Asociación Civil Ciencia Hoy, 69-73. | spa |
dc.relation.references | Ravindran, R. J. (2016). A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology, 92-102. | spa |
dc.relation.references | Renewable Fuels Association. (2019). Pocket Guide to Ethanol 2019. Washington D.C: Renewable Fuels Association. | spa |
dc.relation.references | Rochaa, G. G. (2012). Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Industrial Crops and Products, 274-279. | spa |
dc.relation.references | Sánchez, O., & Cardona, C. (2008). Trends in Biotechnological Production of Fuel Ethanol from Different Feedstocks. Bioresource technology. , 5270-95. | spa |
dc.relation.references | Seranntes, L. (2009. ). Determinação de dados cinéticos da deslignificação do bagaço de cana-de-açúcar e da hidrólise enzimática no pré-tratamento com hidróxido de cálcio. . Faculdade de Engenheira Química, Universidade Estadual de Campinas, Brasil, Dissertação (Mestrado). | spa |
dc.relation.references | Silva, P., Cesar de Oliveira, J., Martins, R., Mendonça, R., & Fonseca, M. (2018). Production of carboxymethyl lignin from sugar cane bagasse: A cement retarder additive for oilwell application. Industrial Crops & Products 116, 144-149 | spa |
dc.relation.references | Simões, R., & Castro, J. (1999). Ozone delignification of pine and eucalyptus kraft pulps. 2 selectivity. Ind Eng Chem Res , 4608-4614. | spa |
dc.relation.references | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP). | spa |
dc.relation.references | Srokol, Z., Bouche, A.-G., Estrik, A., Strik, R., Maschmeyer, T., & Peters, J. (2004). Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydrate Research 339 , 1717–1726. | spa |
dc.relation.references | Stanmore, B. (2010). Generation of energy from sugarcane bagasse by thermal treatment. J. Waste Biomass Valoriz , 77-89. | spa |
dc.relation.references | Stichnothe, H., & Azapagic, A. (2009). Bioethanol from waste: Life cycle estimation of the greenhouse gas saving potential. Resources, Conservation and Recycling, 624-630. | spa |
dc.relation.references | Suárez, S., Candela, A., Henao, J., & Bayona, O. (2019). Evaluación del desempeño del pretratamiento con peróxido de hidrógeno sobre bagazo de caña deazúcar para remoción de lignina. ITECKNE Vol. 16, 21-28. | spa |
dc.relation.references | Sun R, T. J. (2000). Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. . Carbohydrate Polymers, 111-122. | spa |
dc.relation.references | Sun, S. S. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. , 49–58. | spa |
dc.relation.references | Szengyel, Z. (2000). Ethanol from woodCellulase enzyme production ,. Department of Chemical Engineering, Lund University. | spa |
dc.relation.references | Taherzadeh, M., & Karimi, K. (2008). Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 1621-1651. | spa |
dc.relation.references | Talha, Z. D. (2016). Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production. BioMed Research International, 1-10. | spa |
dc.relation.references | Tao, L. A., Hames, B., & Thomas, S. W. (2011). Process and technoeconomic analysis of leading pretreatment technologies for. Bioresource Technology, 11105-11114. | spa |
dc.relation.references | Teixeira, L., Linden, J., & Schroeder, H. (1999). Alkaline and Peracetic Acid Pretreatments of Biomass for Ethanol Production . Twentieth Symposium on Biotechnology for Fuels and Chemicals, 77-79. | spa |
dc.relation.references | Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology 157 , 68–76. | spa |
dc.relation.references | Van Dyk, J., & Pletschke, B. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnology Advances 30 , 1458–1480. | spa |
dc.relation.references | Yıldız, l. (2018 ). Comprehensive Energy Systems. Volume 1. Canadá: 8 Elsevier Inc. | spa |
dc.relation.references | Zhang, Y., & LR, L. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. , 797-824. | spa |
dc.relation.references | Zhao, X. L. (2019). Mechanism on effect of liquid ammonia and hydrogen peroxide pretreatment on rice straw enzymatic hydrolysis. Chinese Society of Agricultural Engineering, 221-226. | spa |
dc.relation.references | Zhao, X. Z. (2012). Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Biorefin. , 465–482. | spa |
dc.relation.references | Zhao, X., Peng, F., Cheng, K., & Liu, D. (2009). Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. . Enzyme Microbiology Technology, v. 44, 17-23. | spa |
dc.relation.references | Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W., & Xiao, M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production. . Bioresource Technology, v. 102, 11177–11182. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.subject.keyword | Lignocellulosic wastes | spa |
dc.subject.keyword | Enzymatic hydrolysis | spa |
dc.subject.keyword | Lignin | spa |
dc.subject.keyword | Cellulose | spa |
dc.subject.keyword | Hemicellulose | spa |
dc.subject.keyword | Hydrogen peroxide | spa |
dc.subject.keyword | Biomass | spa |
dc.subject.lemb | Productos de residuos como combustible | spa |
dc.subject.lemb | Aprovechamiento de residuos | spa |
dc.subject.lemb | Energía biomásica | spa |
dc.subject.lemb | Inversión del azucar | spa |
dc.subject.lemb | Hidrólisis enzimática | spa |
dc.subject.lemb | Peróxido de hidrógeno | spa |
dc.subject.lemb | Lignina-biodegradación | spa |
dc.subject.proposal | Residuos lignocelulósicos | spa |
dc.subject.proposal | Hidrólisis enzimática | spa |
dc.subject.proposal | Lignina | spa |
dc.subject.proposal | Celulosa | spa |
dc.subject.proposal | Hemicelulosa | spa |
dc.subject.proposal | Peróxido de hidrógeno | spa |
dc.subject.proposal | Biomasa | spa |
dc.title | Sacarificación de residuos lignocelulósicos pretratados con peróxido de hidrógeno para la obtención de azúcares fermentables | spa |
dc.type | bachelor thesis | |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Tesis de pregrado | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- 2021VergaraManuel.pdf
- Tamaño:
- 1.95 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2021ManuelVergara1.pdf
- Tamaño:
- 315.45 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Aprobación de facultad

- Nombre:
- 2021VergaraManuel2.pdf
- Tamaño:
- 1.42 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Autorización de publicación
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: