Sacarificación de residuos lignocelulósicos pretratados con peróxido de hidrógeno para la obtención de azúcares fermentables

dc.contributor.advisorBayona Ayala, Olga Luciaspa
dc.contributor.advisorAlvarado Rueda, Lizeth Johannaspa
dc.contributor.authorVergara Menco, Manuel Antoniospa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2021-02-11T15:05:09Zspa
dc.date.available2021-02-11T15:05:09Zspa
dc.date.issued2021-02-10spa
dc.descriptionEn el mundo hay un gran consumo y dependencia de los combustibles fósiles, a pesar del gran daño ambiental que estos causan, por ello, en los últimos años se ha venido explorando fuentes alternativas de energía, que sean más amigables con el medio ambiente como son los combustibles líquidos de origen biológico o biocombustibles. En esta investigación se evaluó la conversión de azúcares fermentables para la producción de etanol de segunda generación a partir de biomasas lignocelulósicas evaluando tres variables en la etapa de la hidrólisis enzimática. (porcentaje de sólidos, carga enzimática y tamaño de partícula) mediante el uso de un diseño de experimentos 23 con triplicado en el punto central usando el análisis de superficie de respuesta en la cual se observó las variables más significativas en la etapa de hidrólisis enzimática fueron, porcentaje de sólidos y carga enzimática ya que presentaron valores de p ˂ 0,05 en rango de estudio al 95% de confianza, y se encontró que gracias al pretratamiento con peróxido de hidrogeno la recalcitrancia del material lignocelulósico disminuyó significativamente.spa
dc.description.abstractIn the world there is a great consumption and dependency on fossil fuels, despite the great environmental damage that these causes, therefore, in recent years, alternative energy sources have been explored, which are more friendly to the environment such as liquid fuels of biological origin or biofuels. In this research, the conversion of fermentable sugars for the production of second generation ethanol from lignocellulosic biomasses was evaluated by evaluating three variables in the enzymatic hydrolysis stage. (percentage of solids, enzymatic charge and particle size) by using an experiment design 23 with triplicate in the central point using the response surface analysis in which the most significant variables in the enzymatic hydrolysis stage were observed were , percentage of solids and enzyme load since they presented values of p ˂ 0.05 in the study range at 95% confidence, and it was found that due to pretreatment with hydrogen peroxide, the recalcitrance of the lignocellulosic material decreased significantly.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationVergara Menco, M. A. (2021). Sacarificación de residuos lignocelulósicos pretratados con peróxido de hidrógeno para la obtención de azúcares fermentables. [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/32079
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programPregrado Química Ambientalspa
dc.relation.referencesAbels, C., Carstensen, F., & Wessling, M. (2013). Membrane processes in biorefinery applications. Journal of Membrane Science, 285-317.spa
dc.relation.referencesAgency, I. E. (2019). The latest trends in energy and emissions in 2018. París (Francia): Global Energy y CO2 Status Report.spa
dc.relation.referencesAguiar, M. L. (2010). Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Brazilian archives of biology and technology an international journal, 1245-1254.spa
dc.relation.referencesAhmadi, F. Z. (2016). Pre-treatment of sugarcane bagasse with a combination of sodium hydroxide and lime for improving the ruminal degradability: optimization of process parameters using response surface methodology. ournal of Applied Animal Research, 287–296.spa
dc.relation.referencesAlmazán, O., Hernández, A., Brizuela, M., Carvajal, O., & Arias, G. (2013). El bagazo de la caña de azúcar, conocimiento y potencial. La Habana: ICIDCA.spa
dc.relation.referencesAlmergren, J. A. (2009). Quimiometría integral. Análisis de datos químicos y bioquímicos. Elsevier BV.spa
dc.relation.referencesAlvira, P. T.-P. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol., 101, 4851–4861.spa
dc.relation.referencesAmiri, H., Karimi, K., & Zilouei, H. (2014). Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology, 450-456.spa
dc.relation.referencesAsocaña. (2016, Noviembre 14). Informe Anual 2016-2017. Cali: Impresiones Richard.spa
dc.relation.referencesAsocaña. (2019, Febrero 07). Asocana.org. Retrieved from https://www.asocana.org/modules/documentos/2/234.aspxspa
dc.relation.referencesAyala, O. (2012). Avaliação de pré-tratamentos para a hidrólise enzimática de palha de cana-de-açúcar considerando a produção de etanol. . Faculdade de Engenheira Química, Universidade Estadual de Campinas, Brasil, Dissertação (Mestrado).spa
dc.relation.referencesBanerjee, G. C., Liu, T., Williams, D., Meza, S., & Walton, J. (2012). Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, andethanolic fermentation. . Biotechnology and Bioengineering, 922–31.spa
dc.relation.referencesBarakat, A. C. (2014). Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis. Applied Energy, 95-105.spa
dc.relation.referencesBarros, R., Paredes, R., Endo, T., Bon, E., & Lee, S. (2013). Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresource Technology, 288–294.spa
dc.relation.referencesBehera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and ustainable Energy Reviews, v. 36, 91- 106.spa
dc.relation.referencesBinod, P. S. (2012). Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 109- 116.spa
dc.relation.referencesBiocombustibles, F. c. (2019, Julio 02). Fedebiocombustibles.com. Retrieved from https://fedebiocombustibles.com/nota-web-id-2780.htmspa
dc.relation.referencesCandido, R. G. (2012). Study of sugarcane bagasse pretreatment with sulfuric acid as a step of cellulose obtaining. World Academy of Science, Engineering and Technology, 6-10.spa
dc.relation.referencesCarrier, M., Serani-Loppinet, A., Denux, D., Lasnier, J., Ham-Pichavant, F., Cansell, F., & Aymonier, C. (2011). Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass and Bioenergy, v. 35 , 298-307.spa
dc.relation.referencesCarvalho, A. B. (2019). Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source. Bioresource Technology, 269-275.spa
dc.relation.referencesCarvalho, D. Q. (2016). Assessment of alkaline pretreatmen for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Industrial Crops and Products, 932-941.spa
dc.relation.referencesCastro, A. P. (2010.). Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Quimica Nova, v. 33, 181-188.spa
dc.relation.referencesChandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of bioseranl production. Renewablw and Sustainable Energy Reviews, v. 16, 1462-1476.spa
dc.relation.referencesConde-Mejía, C., Jiménez-Gutiérreza, A., & El-Halwagi, M. (2012.). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. . Process Safety and Environmental Protection, v. 90, 189-202.spa
dc.relation.referencesDehkhoda, A. (2008). Concentrating lignocellulosic hydrolysate by evaporation and its fermentation by repeated fedbatch using flocculating Saccharomyces cerevisiae. . Industrial Biotechnology Boras University and SEKAB E-Technology, Sweden, Dissertação (Mestrado).spa
dc.relation.referencesDeng, F., Cheong, D., & Aita, G. (2018). Optimization of activated carbon detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by response surface methodology. ndustrial Crops and Products. Volume 115, 166-173.spa
dc.relation.referencesDias, M., Cunha, M., Jesus, C., Rocha, G., Pradella, J., Rossell, . . . Bonomi, A. (2011). Second generation ethanol in Brazil: Can it compete with electricity production? Bioresource Technology 102, 8964–8971.spa
dc.relation.referencesDias, M., Junqueira, T., Jesus, C., Rossell, C., R., M.-F., & Bonomi, A. (2012). Improving second generation ethanol production through optimization of first generation production process from sugarcane. Energy, v. 43, p. , 246-252.spa
dc.relation.referencesDouglas, K. ( 2011). Potential Soil Quality Impact of Harvesting Crop Residues for Bioseranls. Agrociencia, 15, 120-127.spa
dc.relation.referencesDurán, D., Figueroa, A., Gualdrón, M., & Sierra, R. (2018). Potential of tropical fruit waste in bioenergy processes and bioproducts design. European Biomass Conference and Exhibition Proceedings (pp. 166-174). Bogotá-Colombia: ETA-Florence Renewable Energies.spa
dc.relation.referencesEichler, P., Santos, F., Toledo, M., Zerbin, P., Schmitz, G., Alves, C., & Ries, L. &. (2015). Biomethanol production via gasification of lignocellulosic biomass. . Química Nova, 38, 828-835.spa
dc.relation.referencesFedebiocombustibles. (2019, Octuble 22). Fedebiocombustibles.com. Retrieved from http://www.fedebiocombustibles.com/v3/estadistica-produccion-tituloAlcohol_Carburante_(Etanol).htmspa
dc.relation.referencesFranco, D. (2014). Caracterização física química das cinzas de palha de cana-de-açúcar através de análises térmicas simultâneas (STA). Brazil: UNICAMP.spa
dc.relation.referencesGarcía, C., Carmona, E., Caballero, A., Solarte, J., Martíneza, J., & Cardona, C. (2018). Fermentative Production of Ethanol Using Pinus patula as Raw Material: Economic and Energy Assessment. Waste and Biomass Valorization.spa
dc.relation.referencesGarcía-Cubero, M., González-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. . Bioresour. Technol. 100, , 1608–1613.spa
dc.relation.referencesGu, F., Wang, W., Jing, L., & Jin, Y. (2013). cts of green liquor pretreatment on the chemical composition and enzymatic digestibility of rice straw. Bioresource Technology 149 , 375–382.spa
dc.relation.referencesGuilherme, A. D. (2017). Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose. Brazilian Journal of Chemical Engineering, 937 – 947.spa
dc.relation.referencesGuo, T., He, A., Du, T., Zhu, D., Liang, D., Jiang, M., . . . Ouyang, P. (2013). Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitortolerance. Bioresource Technology 135 , 379–385.spa
dc.relation.referencesHamelinck, C., & Hooijdonk, G. &. (2005). Ethaol from lignocellulosic biomass: techno-economic performance in short, middle and long term. . Biomass & Bioenergy, 28, 384-410.spa
dc.relation.referencesHarun, S., Balan, V., Takriffl, M., O., H., Jahim, J., & B., D. (2013). Performance of AFEX™ pretreated rice straw as source of fermentable sugars: the influence of particle size. . Biotechnology for Bioseranls, v. 6,, 40-57.spa
dc.relation.referencesHemansi., G. R. (2020). Hemansi, Gupta, R., Aswal, V. K., & Saini, J. K. (2019). Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: Insight from small angle neutron scattering (SANS). Renewable Energy, 2091-2101.spa
dc.relation.referencesHo, M., Onga, V., & Wu, T. (2019). Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review. Renewable and Sustainable Energy Reviews, 75–86.spa
dc.relation.referencesHu, F. R. (2012). Pretreatment and Lignocellulosic Chemistry. Bioenergy Research, 1043-1066.spa
dc.relation.referencesHu, F. R. (n.d.). Pretreatment and Lignocellulosic Chemistryspa
dc.relation.referencesJaimes, Y., & Aranzazu, F. (2010). Manejo de las enfermedades del cacao en Colombia, con énfasis en monilia. Corpoica, 25-27.spa
dc.relation.referencesJeoh, T. I. (2007). Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98 , 112-122.spa
dc.relation.referencesJM., G. (1984). Alkaline peroxide delignification of agricultural residues to enhance saccharification. Biotechnol Bioeng , 46–52spa
dc.relation.referencesKarimi, K., Shafiei, M., & Kumar, R. (2013). Progreso en el pretratamiento físico y químico de la biomasa lignocelulósica. Bioresource Technology, 53-96.spa
dc.relation.referencesKarp, S. W. (2013). Pretreatment strategies for delignification of sugarcane Bagasse : A review. Biocatalysis and Agricultural Biotechnology, 679-689.spa
dc.relation.referencesKim, H., & Choi, B. (2010). The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine. Renewable Energy , 157–163spa
dc.relation.referencesKim, Y. H. (2009). Liquid hot water pretreatment of cellulosic biomass. Biofuels, Springer, 93-102.spa
dc.relation.referencesKumar, B. B. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology 199, 106-244.spa
dc.relation.referencesKumar, P., Barret, D., & Delwiche, M. e. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Bioseranl Production. . Industrial & Engineering Chemistry Research, v. 48, , 3713–3729.spa
dc.relation.referencesLalucea, C., Roldana, I., Pecorarob, E., Igbojionuc, L., & Ribeirod, C. (2019). Effects of pretreatment applied to sugarcane bagasse on composition and morphology of cellulosic fractions. Biomass and Bioenergy , 231–238.spa
dc.relation.referencesLarabi, C., Maksoud, W., Szeto, K., Roubaud, A., Castelli, P., Santini, C., & Walter, J. (2013). Thermal decomposition of lignocellulosic biomass in the presence of acid catalysts. Bioresource Technology, 255–260.spa
dc.relation.referencesLee, D., Owens, V., Boe, A., & Jeranyama, P. (2007). Composition of herbaceous biomass feedstocks. . South Dakota State University Publication.spa
dc.relation.referencesLi, J. L. (2018). Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: Chemical and microstructural analyses. Bioresource Technology, 1-7.spa
dc.relation.referencesLin, C., & Luque, R. &. ( 2014). Renewable Resources for Biorefineries. . Royal Society of Chemistry, 27, 116-120.spa
dc.relation.referencesLinhares, W. (2019, Junio 19). Fedebiocombustible.Retrieved from https://www.fedebiocombustibles.com/nota-web-id-3158.htmspa
dc.relation.referencesLjungdahl, L. E. (1985). Ecology of microbial cellulose degradation. Adv. in Microb. Ecol, 237 - 299.spa
dc.relation.referencesLuo, M., Tian, D., Shen, F., Hu, J., Zhang, Y., Yang, G., . . . Hu, Y. (2018). A comparative investigation of H2O2-involved pretreatments on lignocellulosic biomass for enzymatic hydrolysis. Biomass Conversion and Biorefinery.spa
dc.relation.referencesLynd, L., Cushman, J., & Nichols, R. &. (1991). Seranl Ethanol from Cellulosic Biomass. Science , 251, 1318-1323.spa
dc.relation.referencesMaki, M., Leung, K., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass . International Journal of Biological Sciences, 500-516.spa
dc.relation.referencesMartin, C., Alriksson, B., Sjose, A., Nilvebrant, N., & L., J. (2007). Dilute sulfuric acid pretreatment of agricultural and agroindustrial residues for ethanol production. . Applied Biochemistry and Biotechnology, v. 140, p. , 339–352.spa
dc.relation.referencesMcKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46.spa
dc.relation.referencesMesa, L., González, E., Castro, E., Ruiz, E., Romero, I., & Cara, C. (2009). EVALUACIÓN DE COMPONENTES ACCESORIOS EN LA HIDRÓLISIS ENZIMÁTICADEL BAGAZO DE LA CAÑA DE AZÚCAR PRETRATADO PARA LA PRODUCCIÓN DE ETANOL. Revista Cubana de Química, vol. XXI,, 80-87.spa
dc.relation.referencesMira, J. C. (2019). Aspectos generales del sector agroindustrial de la caña. Informe Anual 2018 - 2019. Cali: Impresos Richard.spa
dc.relation.referencesMira, J., Carvajal, A., Calero, A., Vallecilla, S., Astudillo, C., Campos, A., . . . Chávez, C. (2017). Aspectos generales del sector de agroindustrial de la caña, Informe anual 2017-2018. Cali: Impresiones Richard.spa
dc.relation.referencesMira, J., Carvajal, A., Calero, A., Vallecilla, S., Astudillo, C., Campos, A., . . . Chávez, C. (2019). Aspectos generales del sector agroindustrial de la caña. Cali: Impresión Richard.spa
dc.relation.referencesMittal, A., Katahira, R., Donohoe, S., Black, B., Pattathil, S., Stringer, J., & Beckham, G. (2017). Alkaline Peroxide Delignification of Corn Stover. ACS Sustainable Chem. Eng, 6310−6321.spa
dc.relation.referencesMohammad, J., Taherzadeh, & Karimi., K. (2008). Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 1623.spa
dc.relation.referencesMok, W., & Antal, M. (1992). Uncatalyzed Solvolysis of Whole Biomass Hemicellulose by Hot Compressed Liquid Water. Ind. Eng. Chem, 1157-1161.spa
dc.relation.referencesMood, S., Golfeshan, A., Tabatabaei, M., Jouzani, G., Najafi, G., Gholami, M., & al., e. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. . Renew Sustain Energy Rev, 77–93.spa
dc.relation.referencesMosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., & Holtzapple, M. e. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, v. 96, 673- 686.spa
dc.relation.referencesMotaunga, T., & Anandjiwalaa, R. (2015). Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Industrial Crops and Products 74, 472–477.spa
dc.relation.referencesNeureiter, M., Danner, H., Thomasser, C., Saidi, B., & Braun, R. (2002). Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Applied Biochemistry and Biotechnology, v.98/100, 49– 58.spa
dc.relation.referencesofficinarum, S. (2020, Enero 17). Retrieved from https://es.wikipedia.org/: https://es.wikipedia.org/wiki/Saccharum_officinarum#/media/Archivo:Saccharum_officinarum_B lanco1.18-cropped.jpgspa
dc.relation.referencesOgeda, T., & Petri, D. (2010). Hidrólise Enzimática de Biomassa. Quim. Nova, Vol. 33, No. 7, 1549- 1558.spa
dc.relation.referencesOladi, S., & Aita, G. (2018). Interactive effect of enzymes and surfactant on the cellulose digestibility of un-washed and washed dilute ammonia pretreated energy cane bagasse. Biomass and Bioenergy Volume 109, 221-230.spa
dc.relation.referencesOumer, A. H. (2018). Bio-based liquid fuels as a source of renewable energy: A review. Renewable and Sustainable Energy Reviews, 82-98.spa
dc.relation.referencesPalonen, H., Thomsen, A., Tenkanen, M., Schmidt, A., & Viikari, L. (2004). Evaluation of wetoxidation pretreatment for enzymatic hydrolysis of softwood. . Appl Biochem. and biotechnol., 1-17.spa
dc.relation.referencesPaszczyński, A., Crawford, R., & Blanchette, R. (1988). Delignification of Wood Chips and Pulps by Using Natural and Synthetic Porphyrins: Models of Fungal Decay. Applied and Enviromental Microbiology , 62-68.spa
dc.relation.referencesQi, B., Chen, X., & Wana, Y. (2010). Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresource Technology, v. 101, 4875-4883.spa
dc.relation.referencesRabelo, S. (2010). Avaliação e otimização de pré-tratamentos e hidrólise enzimática do bagaço de canade-açúcar para produção de etanol de segunda geração. . Faculdaspa
dc.relation.referencesRabelo, S. A. (2014). Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis. Fuel, 349-357.spa
dc.relation.referencesRabelo, S. A. (2014). Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. ELSEVIER, 249-357.spa
dc.relation.referencesRaele, R., Boaventura, J., F. A., & Sarturi, G. (2014). Scenarios for the second generation ethanol in Brazil. . Technological Forecasting & Social Change, 87, 205-223.spa
dc.relation.referencesRamos, F., Díaz, M., & Villar, M. (2016). Biocombustibles. Asociación Civil Ciencia Hoy, 69-73.spa
dc.relation.referencesRavindran, R. J. (2016). A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology, 92-102.spa
dc.relation.referencesRenewable Fuels Association. (2019). Pocket Guide to Ethanol 2019. Washington D.C: Renewable Fuels Association.spa
dc.relation.referencesRochaa, G. G. (2012). Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Industrial Crops and Products, 274-279.spa
dc.relation.referencesSánchez, O., & Cardona, C. (2008). Trends in Biotechnological Production of Fuel Ethanol from Different Feedstocks. Bioresource technology. , 5270-95.spa
dc.relation.referencesSeranntes, L. (2009. ). Determinação de dados cinéticos da deslignificação do bagaço de cana-de-açúcar e da hidrólise enzimática no pré-tratamento com hidróxido de cálcio. . Faculdade de Engenheira Química, Universidade Estadual de Campinas, Brasil, Dissertação (Mestrado).spa
dc.relation.referencesSilva, P., Cesar de Oliveira, J., Martins, R., Mendonça, R., & Fonseca, M. (2018). Production of carboxymethyl lignin from sugar cane bagasse: A cement retarder additive for oilwell application. Industrial Crops & Products 116, 144-149spa
dc.relation.referencesSimões, R., & Castro, J. (1999). Ozone delignification of pine and eucalyptus kraft pulps. 2 selectivity. Ind Eng Chem Res , 4608-4614.spa
dc.relation.referencesSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP).spa
dc.relation.referencesSrokol, Z., Bouche, A.-G., Estrik, A., Strik, R., Maschmeyer, T., & Peters, J. (2004). Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydrate Research 339 , 1717–1726.spa
dc.relation.referencesStanmore, B. (2010). Generation of energy from sugarcane bagasse by thermal treatment. J. Waste Biomass Valoriz , 77-89.spa
dc.relation.referencesStichnothe, H., & Azapagic, A. (2009). Bioethanol from waste: Life cycle estimation of the greenhouse gas saving potential. Resources, Conservation and Recycling, 624-630.spa
dc.relation.referencesSuárez, S., Candela, A., Henao, J., & Bayona, O. (2019). Evaluación del desempeño del pretratamiento con peróxido de hidrógeno sobre bagazo de caña deazúcar para remoción de lignina. ITECKNE Vol. 16, 21-28.spa
dc.relation.referencesSun R, T. J. (2000). Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. . Carbohydrate Polymers, 111-122.spa
dc.relation.referencesSun, S. S. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. , 49–58.spa
dc.relation.referencesSzengyel, Z. (2000). Ethanol from woodCellulase enzyme production ,. Department of Chemical Engineering, Lund University.spa
dc.relation.referencesTaherzadeh, M., & Karimi, K. (2008). Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 1621-1651.spa
dc.relation.referencesTalha, Z. D. (2016). Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production. BioMed Research International, 1-10.spa
dc.relation.referencesTao, L. A., Hames, B., & Thomas, S. W. (2011). Process and technoeconomic analysis of leading pretreatment technologies for. Bioresource Technology, 11105-11114.spa
dc.relation.referencesTeixeira, L., Linden, J., & Schroeder, H. (1999). Alkaline and Peracetic Acid Pretreatments of Biomass for Ethanol Production . Twentieth Symposium on Biotechnology for Fuels and Chemicals, 77-79.spa
dc.relation.referencesToquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology 157 , 68–76.spa
dc.relation.referencesVan Dyk, J., & Pletschke, B. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnology Advances 30 , 1458–1480.spa
dc.relation.referencesYıldız, l. (2018 ). Comprehensive Energy Systems. Volume 1. Canadá: 8 Elsevier Inc.spa
dc.relation.referencesZhang, Y., & LR, L. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. , 797-824.spa
dc.relation.referencesZhao, X. L. (2019). Mechanism on effect of liquid ammonia and hydrogen peroxide pretreatment on rice straw enzymatic hydrolysis. Chinese Society of Agricultural Engineering, 221-226.spa
dc.relation.referencesZhao, X. Z. (2012). Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Biorefin. , 465–482.spa
dc.relation.referencesZhao, X., Peng, F., Cheng, K., & Liu, D. (2009). Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. . Enzyme Microbiology Technology, v. 44, 17-23.spa
dc.relation.referencesZhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W., & Xiao, M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production. . Bioresource Technology, v. 102, 11177–11182.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordLignocellulosic wastesspa
dc.subject.keywordEnzymatic hydrolysisspa
dc.subject.keywordLigninspa
dc.subject.keywordCellulosespa
dc.subject.keywordHemicellulosespa
dc.subject.keywordHydrogen peroxidespa
dc.subject.keywordBiomassspa
dc.subject.lembProductos de residuos como combustiblespa
dc.subject.lembAprovechamiento de residuosspa
dc.subject.lembEnergía biomásicaspa
dc.subject.lembInversión del azucarspa
dc.subject.lembHidrólisis enzimáticaspa
dc.subject.lembPeróxido de hidrógenospa
dc.subject.lembLignina-biodegradaciónspa
dc.subject.proposalResiduos lignocelulósicosspa
dc.subject.proposalHidrólisis enzimáticaspa
dc.subject.proposalLigninaspa
dc.subject.proposalCelulosaspa
dc.subject.proposalHemicelulosaspa
dc.subject.proposalPeróxido de hidrógenospa
dc.subject.proposalBiomasaspa
dc.titleSacarificación de residuos lignocelulósicos pretratados con peróxido de hidrógeno para la obtención de azúcares fermentablesspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2021VergaraManuel.pdf
Tamaño:
1.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2021ManuelVergara1.pdf
Tamaño:
315.45 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación de facultad
Thumbnail USTA
Nombre:
2021VergaraManuel2.pdf
Tamaño:
1.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Autorización de publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: