Caracterización fisicoquímica y mineralógica de un suelo de uso agrícola ubicado en el campus El Limonal de la Universidad Santo Tomás, Piedecuesta

dc.contributor.advisorCandela Soto, Angélica Maríaspa
dc.contributor.authorGraterón Vargas, Andrés Felipespa
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2020-09-16T20:06:20Zspa
dc.date.available2020-09-16T20:06:20Zspa
dc.date.issued2020-09-08spa
dc.descriptionLa caracterización de los suelos de uso agrícola es esencial para lograr una completa comprensión de las complejas relaciones existentes entre las propiedades del suelo, los factores ambientales que influyen en su fertilidad y los sistemas de uso de los mismos. Por esta razón el trabajo de grado tiene como propósito caracterizar fisicoquímica y mineralógicamente un suelo de uso agrícola ubicado en el campus El Limonal de la Universidad Santo Tomás, Piedecuesta. La metodología requerida para la caracterización fisicoquímica de suelos de uso agrícola fue la recomendada por el Instituto Geográfico Agustín Codazzi, del gobierno de Colombia. Las características evaluadas son: porcentaje de humedad, el pH, la textura del suelo, la capacidad de intercambio catiónico, la acidez intercambiable, el carbono orgánico, las bases intercambiables, la concentración de micronutrientes (Fe, Mn, Cu y Zn), nitratos y finalmente se hizo una caracterización por la técnica de difracción de rayos X (DRX). Todo esto con el fin de proporcionar información en el área de estudio y establecer la importancia de conocer el estado actual del suelo y su viabilidad para desarrollar un cultivo de cacao.spa
dc.description.abstractCharacterization of soils for agricultural use is essential to achieve a complete understanding of the complex relationships between soil properties, the environmental factors that influence its fertility, and their use systems. For this reason, the purpose of this degree project is to characterize physicochemically and mineralogically a soil for agricultural use located on the El Limonal campus of the Universidad Santo Tomás, Piedecuesta. The required methodology for the physicochemical characterization of soils for agricultural use was recommended by the Agustín Codazzi Geographical Institute, of the Colombian government. The evaluated characteristics are: moisture percentage, pH, soil texture, cation exchange capacity, interchangeable acidity, organic carbon,interchangeable bases, micronutrient concentration (Fe, Mn, Cu and Zn), nitrates and finally a characterization was made by the X-ray diffraction technique (XRD). All this in order to provide information in the study area and establish the importance of knowing the current state of the soil and its viability to develop a cocoa crop.spa
dc.description.degreelevelPregradospa
dc.description.degreenameQuímico Ambientalspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationVargas Graterón, F. A. (2020). Caracterización fisicoquímica y mineralógica de un suelo de uso agrícola ubicado en el campus El Limonal de la Universidad Santo Tomás. [Trabajo de pregrado] Universidad Santo Tomás. Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/29850
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Química Ambientalspa
dc.publisher.programPregrado Química Ambientalspa
dc.relation.referencesAcevedo, J. A., Díaz Cortés, A. M., Velázquez Sánchez, E., & Vera Gross, Z. (2015). Conservación y recuperación de suelos agrícolas para el aumento de la productividad en el Istmo de Tehuantepec. Estudios Agrarios, 175-190.spa
dc.relation.referencesAlvarez, R., Evans, L. A., Milham, P. J., & Wilson, M. A. (2004). Effects of humic material on the precipitation of calcium phosphate. Geoderma, 118(3–4), 245–260. https://doi.org/10.1016/S0016-7061(03)00207-6spa
dc.relation.referencesArvelo, M., González, D., Maroto, S., Delgado, T., & Montoya, P. (2017). Manual del cultivo de cacao Buenas prácticas para América Latina. In Instituto Interamericano de Cooperación para la Agricultura (IICA).spa
dc.relation.referencesBaquero López, E. (Fedecacao). (2018). Federacion Nacional De Cacaoteros Fondo Nacional Del Cacao. In On Line. Retrieved from https://www.fedecacao.com.co/portal/images/MEMORIAS_V_SEMINARIO/001._Dr._Eduard_Baquero_-_Fedecacao.pdfspa
dc.relation.referencesBatista, L. (2009). Guía Técnica el Cultivo de Cacao en la República Dominicana. Santo Domingo, Republica Dominicanaspa
dc.relation.referencesBergaya, F., Lagaly, G., & Vayer, M. (2013). Cation and Anion Exchange. In Developments in Clay Science (2nd ed., Vol. 5, pp. 333–359). https://doi.org/10.1016/B978-0-08-098259-5.00013-5spa
dc.relation.referencesBrown, B. E., & Bailey, S. W. (1964). The structure of maximum microcline. Acta Crystallographica, 17(11), 1391–1400. https://doi.org/10.1107/s0365110x64003498spa
dc.relation.referencesCruces, L. (2005). Edaphic Properties.spa
dc.relation.referencesDa Silva Moço, M. K., Da Gama-Rodrigues, E. F., Da Gama-Rodrigues, A. C., MacHado, R. C. R., & Baligar, V. C. (2009). Soil and litter fauna of cacao agroforestry systems in Bahia, Brazil. Agroforestry Systems, 76(1), 127–138. https://doi.org/10.1007/s10457-008-9178-6spa
dc.relation.referencesDelgado, A., Madrid, A., Kassem, S., Andreu, L., & Del Campillo, M. D. C. (2002). Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant and Soil, 245(2), 277–286. https://doi.org/10.1023/A:1020445710584spa
dc.relation.referencesDepartment of Agriculture - BPI. (2016). 2017-2022 Philippine Cacao Industry Roadmap.spa
dc.relation.referencesDíaz-Montenegro, J., Varela, E., & Gil, J. M. (2018). Livelihood strategies of cacao producers in Ecuador: Effects of national policies to support cacao farmers and specialty cacao landraces. Journal of Rural Studies, 63(December 2017), 141–156. https://doi.org/10.1016/j.jrurstud.2018.08.004spa
dc.relation.referencesDriver, J., Lijmbach, D., & Steen, I. (1999). Why Recover Phosphorus for Recycling and How? Enviromental Technology, 20, 651–662. https://doi.org/10.1080/09593332008616861spa
dc.relation.referencesFedecacao. (2019). Informe de ejecución plan de ingresos, inversiones y gastos del fondo nacional del cacao durante el cuarto trimestre y consolidado vigencia 2018. In Informe de la producción nacional de cacao. Retrieved from https://www.fedecacao.com.co/portal/images/INFORME_2018.pdfspa
dc.relation.referencesFEDECACAO. (2018). Informe De Gestión Año 2017.spa
dc.relation.referencesFedecacao, F. N. D. C. (2013). Guía ambiental para el cultivo del cacao.spa
dc.relation.referencesFrancis, S., & Richard, B. (2005). Optimización de la humedad del suelo para la producción vegetal: El significado de la porosidad del suelo. In Boletín de Suelos de la FAO 79. Retrieved from http://www.fao.org/docrep/008/y4690s/y4690s00.htmspa
dc.relation.referencesGutiérrez García, G. A., Gutiérrez-Montes, I., Hernández Núñez, H. E., Suárez Salazar, J. C., & Casanoves, F. (2020). Relevance of local knowledge in decision-making and rural innovation: A methodological proposal for leveraging participation of Colombian cocoa producers. Journal of Rural Studies, 75(November 2019), 119–124. https://doi.org/10.1016/j.jrurstud.2020.01.012spa
dc.relation.referencesHarrison, R. B., & Strahm, B. D. (2008). Soil Formation. Encyclopedia of Ecology, Five-Volume Set, (i), 3291–3295. https://doi.org/10.1016/B978-008045405-4.00297-4spa
dc.relation.referencesHartemink, A. E., Zhang, Y., Bockheim, J. G., Curi, N., Silva, S. H. G., Grauer-Gray, J., … Krasilnikov, P. (2020). Soil horizon variation: A review. In Advances in Agronomy (1st ed., Vol. 160, pp. 125–185). https://doi.org/10.1016/bs.agron.2019.10.003spa
dc.relation.referencesHobley, E. (2019). Vertical Distribution of Soil Pyrogenic Matter: A Review. Pedosphere, 29(2), 137–149. https://doi.org/10.1016/S1002-0160(19)60795-2spa
dc.relation.referencesIsaac, M. E., Dawoe, E., & Sieciechowicz, K. (2009). Assessing local knowledge use in agroforestry management with cognitive maps. Environmental Management, 43(6), 1321–1329. https://doi.org/10.1007/s00267-008-9201-8spa
dc.relation.referencesKühn, P., Aguilar, J. A., & Miedema, R. (2010). Textural Pedofeatures and Related Horizons. In Interpretation of Micromorphological Features of Soils and Regoliths. https://doi.org/10.1016/B978-0-444-53156-8.00011-8spa
dc.relation.referencesLutgens, F. K., & Tarbuck, E. J. (2005). Ciencias de la Tierra:Una Introduccion a la Geologia Fisica.spa
dc.relation.referencesMantilla, J., Argüello, A. A. L., Méndez, A. H., Contreras Mayorga Antonio Mogollón Ballesteros, N., Eduardo Carrillo, M. R., Corpoica Edicibn, P., & Ramirez, N. G. (2000). Caracterización y Tipificacián de los Productores de Cacao del Departamento de Santander. In Publicación Corpoica. Retrieved from http://bibliotecadigital.agronet.gov.co/bitstream/11348/6355/1/150.pdfspa
dc.relation.referencesMazloomi, F., & Jalali, M. (2019). Effects of vermiculite, nanoclay and zeolite on ammonium transport through saturated sandy loam soil: Column experiments and modeling approaches. Catena, 176(January), 170–180. https://doi.org/10.1016/j.catena.2019.01.014spa
dc.relation.referencesMcGrath, J. M., Spargo, J., & Penn, C. J. (2014). Soil Fertility and Plant Nutrition. Encyclopedia of Agriculture and Food Systems, 5, 166–184. https://doi.org/10.1016/B978-0-444-52512-3.00249-7spa
dc.relation.referencesMejía, L. A. (1999). Producción de cacao mediante la aplicación de materia orgánica cal dolomita y azufre. Seminario Técn¡co Regional, V(3), 6–9.spa
dc.relation.referencesMilić, S., Ninkov, J., Zeremski, T., Latković, D., Šeremešić, S., Radovanović, V., & Žarković, B. (2019). Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field experiment. Geoderma, 339(November 2018), 9–19. https://doi.org/10.1016/j.geoderma.2018.12.017spa
dc.relation.referencesMotamayor, J. C., Risterucci, A. M., Heath, M., & Lanaud, C. (2003). Cacao domestication II: Progenitor germplasm of the Trinitario cacao cultivar. Heredity, 91(3), 322–330. https://doi.org/10.1038/sj.hdy.6800298spa
dc.relation.referencesMotamayor, J. C., Risterucci, A. M., Lopez, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. (2002). Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity, 89(5), 380–386. https://doi.org/10.1038/sj.hdy.6800156spa
dc.relation.referencesMotamayor, Juan C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311spa
dc.relation.referencesNorton, R. D. (2017). Colombia: Crop Competitiveness by Region Evaluated via Tracks 1 and 2. In The Competitiveness of Tropical Agriculture. https://doi.org/https://doi.org/10.1016/B978-0-12-805312-6.00010-6spa
dc.relation.referencesOliva, D. (2009). Deteminación de la acidez intercambiable (AL*3+H*) apartir del pH para la estimación de la capacidad de intercambio catiónico (CIC) en suelos de la cuenca del pacífico en El Salvador, Honduras y Nicaragua. Retrieved from https://bdigital.zamorano.edu/bitstream/11036/386/1/T2804.pdfspa
dc.relation.referencesOsman, M. A., & Suter, U. W. (2000). Determination of the cation-exchange capacity of muscovite mica. Journal of Colloid and Interface Science, 224(1), 112–115. https://doi.org/10.1006/jcis.1999.6677spa
dc.relation.referencesPabón, M. (2016). Caracterizacion Socio-Económica Y Productiva Del Cultivo De Cacao En El Departamento De Santander (Colombia). Revista Mexicana de Agronegocios, 38, 283–294.spa
dc.relation.referencesPavao-Zuckerman, M. A. (2018). Soil ecology. In Encyclopedia of Ecology (Vol. 3, pp. 600–605). https://doi.org/10.1016/B978-0-444-63768-0.00850-7spa
dc.relation.referencesPepper, I. ., & Brusseau, M. L. (2019). Physical-Chemical Characteristics of Soils and the Subsurface. In Environmental and Pollution Science (3rd ed., pp. 9–22). https://doi.org/10.1016/b978-0-12-814719-1.00002-1spa
dc.relation.referencesPerassi, I., & Borgnino, L. (2014). Adsorption and surface precipitation of phosphate onto CaCO3-montmorillonite: Effect of pH, ionic strength and competition with humic acid. Geoderma, 232–234, 600–608. https://doi.org/10.1016/j.geoderma.2014.06.017spa
dc.relation.referencesRouabhia, F., Nemamcha, A., & Moumeni, H. (2018). Elaboration and characterization of mullite-anorthite-albite porous ceramics prepared from Algerian kaolin. Ceramica, 64(369), 126–132. https://doi.org/10.1590/0366-69132018643692297spa
dc.relation.referencesRousseau, G. X., Deheuvels, O., Rodriguez Arias, I., & Somarriba, E. (2012). Indicating soil quality in cacao-based agroforestry systems and old-growth forests: The potential of soil macrofauna assemblage. Ecological Indicators, 23, 535–543. https://doi.org/10.1016/j.ecolind.2012.05.008spa
dc.relation.referencesSachan, A., & Penumadu, D. (2007). Identification of microfabric of kaolinite clay mineral using x-ray diffraction technique. Geotechnical and Geological Engineering, 25(6), 603–616. https://doi.org/10.1007/s10706-007-9133-8spa
dc.relation.referencesShou-ding, L., Jian-huai, G., Yong, X., Jin-xiao, M., & Yong, Y. (2015). Synthesis, Structure and Electrochemical Performance of Na2MnSiO4/C Cathode Material for Na-Ion batteries. Journal of Electrochemestry, 332–335spa
dc.relation.referencesSingh, B., Cattle, S. R., & Field, D. J. (2014). Edaphic Soil Science, Introduction to. Encyclopedia of Agriculture and Food Systems, 3(4), 35–58. https://doi.org/10.1016/B978-0-444-52512-3.00092-9spa
dc.relation.referencesSmyth, J. R., Dyar, M. D., May, H. M., Bricker, O. P., & Acker, J. G. (1997). Crystal structure refinement and Mössbauer spectroscopy of an ordered, triclinic clinochlore. Clays and Clay Minerals, 45(4), 544–550. https://doi.org/10.1346/CCMN.1997.0450406spa
dc.relation.referencesSnoeck, D., Abolo, D., & Jagoret, P. (2010). Temporal changes in VAM fungi in the cocoa agroforestry systems of central Cameroon. Agroforestry Systems, 78(3), 323–328. https://doi.org/10.1007/s10457-009-9254-6spa
dc.relation.referencesSnoeck, D., Koko, L., Joffre, J., Bastide, P., & Jagoret, P. (2016). Sustainable Agriculture Reviews. In Sustainable Agriculture Reviews (Vol. 19, pp. 35–120). https://doi.org/10.1007/978-3-319-26777-7spa
dc.relation.referencesStaunton, S., & Leprince, F. (1996). Effect of pH and some organic anions on the solubility of soil phosphate: Implications for P bioavailability. European Journal of Soil Science, 47(2), 231–239. https://doi.org/10.1111/j.1365-2389.1996.tb01394.xspa
dc.relation.referencesTamamura, S., Takada, T., Tomita, J., Nagao, S., Fukushi, K., & Yamamoto, M. (2014). Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite. Journal of Radioanalytical and Nuclear Chemistry, 299(1), 569–575. https://doi.org/10.1007/s10967-013-2740-3spa
dc.relation.referencesTheng, B. K. G. (2012). The clay minerals. In Developments in Clay Science (2nd ed., Vol. 4). https://doi.org/10.1016/B978-0-444-53354-8.00001-3spa
dc.relation.referencesVaast, P., & Somarriba, E. (2014). Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agroforestry Systems, 88(6), 947–956. https://doi.org/10.1007/s10457-014-9762-xspa
dc.relation.referencesWeikard, H. P., & Seyhan, D. (2009). Distribution of phosphorus resources between rich and poor countries: The effect of recycling. Ecological Economics, 68(6), 1749–1755. https://doi.org/10.1016/j.ecolecon.2008.11.006spa
dc.relation.referencesXie, Y., Sun, H., Luo, L., Peng, T., & Tian, J. (2020). Preparation of high diameter-thickness ratio thin-layer phlogopite-vermiculite nano-functional material by liquid phase exfoliation. Applied Clay Science, 191(March), 105612. https://doi.org/10.1016/j.clay.2020.105612spa
dc.relation.referencesZhang, K., Xu, J., Wang, K. Y., Cheng, L., Wang, J., & Liu, B. (2009). Preparation and characterization of chitosan nanocomposites with vermiculite of different modification. Polymer Degradation and Stability, 94(12), 2121–2127. https://doi.org/10.1016/j.polymdegradstab.2009.10.002spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordSoilsspa
dc.subject.keywordPhysicochemical characterizationspa
dc.subject.keywordCation exchange capacityspa
dc.subject.keywordX-ray diffractionspa
dc.subject.keywordCocoaspa
dc.subject.lembAnálisis de suelosspa
dc.subject.lembComposición de suelosspa
dc.subject.lembQuímica agrícolaspa
dc.subject.lembBioquímica de suelosspa
dc.subject.lembSuelos-adsorción-absorciónspa
dc.subject.proposalSuelosspa
dc.subject.proposalCaracterización fisicoquímicaspa
dc.subject.proposalDifracción de rayos-Xspa
dc.subject.proposalCapacidad intercambio catiónicospa
dc.subject.proposalCacaospa
dc.titleCaracterización fisicoquímica y mineralógica de un suelo de uso agrícola ubicado en el campus El Limonal de la Universidad Santo Tomás, Piedecuestaspa
dc.typebachelor thesis
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2020GrateronAndres.pdf
Tamaño:
2.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2020GrateronAndres1.pdf
Tamaño:
130.32 KB
Formato:
Adobe Portable Document Format
Descripción:
Aprobación de facultad
Thumbnail USTA
Nombre:
2020GrateronAndres2.pdf
Tamaño:
389.38 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización de publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: