Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales.

dc.contributor.advisorGuarnizo Marín, José Guillermo
dc.contributor.advisorBayona Navarro, Jhon Fredy
dc.contributor.authorNoriega Nonsoque, Brian David
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.contributor.orcidhttps://orcid.org/ 0000-0003-0351-7243spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2022-07-08T19:05:26Z
dc.date.available2022-07-08T19:05:26Z
dc.date.issued2022-07-05
dc.descriptionEn el siguiente trabajo de grado presenta una propuesta del diseño y desarrollo de un convertidor tipo Forward junto con un controlador, siendo el controlador usado como control principal hacia el convertidor, basado en redes neuronales artificiales. Para esto se realizó una serie de investigaciones las cuales dan como resultado un diseño electrónico detallado del convertidor Forward junto el proceso, que llevó la realización de la red neuronal para implementarlo al convertidor. En la cual su programación fue ejecutada en el software de MATLAB/SIMULINK. Para la implementación en físico se efectúan las modificaciones en el algoritmo en la DSP C2000-F28069M LaunchPad y en el convertidor Forward diseñado capaz de aportar una potencia de salida de 120W a 12V, con un voltaje de entrada de 220V.spa
dc.description.abstractThe following work presents a proposal for the design and development of a Forward converter together with a controller, being the controller used as the main control to the converter, based on artificial neural networks. For this, a series of investigations were carried out which resulted in a detailed electronic design of the Forward converter together with the process, which led to the realization of the neural network to implement it to the converter. In which its programming was executed in MATLAB/SIMULINK software. For the physical implementation, the modifications in the algorithm are made in the DSP C2000-F28069M LaunchPad and in the designed Forward converter capable of providing an output power of 120W at 12V, with an input voltage of 220V.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Electronicospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationNoriega Nonsoque, B. D. (2022). Control de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio institucional.spa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/45688
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Ingeniería Electrónicaspa
dc.publisher.programPregrado Ingeniería Electrónicaspa
dc.relation.referencesHisham M Soliman y RS Al Abri. «Saturated Digital Control for Regional Pole Placement». En: 2017 9th IEEE-GCC Conference and Exhibition (GCCCE). IEEE. 2017, págs. 1-6spa
dc.relation.referencesXuanying Shao, Jian Hu y Zhongtian Zhao. «Stabilisation strategy based on feedback linearisation for DC microgrid with multi-converter». En: The Journal of Engineering 2019.16 (2019), págs. 1802-1806spa
dc.relation.referencesSaman A Gorji y col. «Topologies and control schemes of bidirectional DC–DC power converters: An overview». En: IEEE Access 7 (2019), págs. 117997-118019.spa
dc.relation.referencesJesus Aguila-Leon y col. «Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller». En: Advances in Science, Technology and Engineering Systems Journal 6.1 (2021), págs. 619-625.spa
dc.relation.referencesHidenori Maruta y col. «Improved transient response for wide input range of DC-DC converter with neural network based digital controller». En: 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe). IEEE. 2017, P-1.spa
dc.relation.referencesPedro Melin y col. «Study of the Open-Source Arduino DUE Board as Digital Control Platform for Three-Phase Power Converters». En: IEEE Access 10 (2021), págs. 7574-7587spa
dc.relation.referencesAiran Frances y col. «Modeling electronic power converters in smart DC microgrids—An overview». En: IEEE Transactions on Smart Grid 9.6 (2017), págs. 6274-6287.spa
dc.relation.referencesTamer Kamel, Yevgen Biletskiy y Liuchen Chang. «Capacitor aging detection for the DC filters in the power electronic converters using ANFIS algorithm». En: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE. 2015, págs. 663-668spa
dc.relation.referencesRavindra Janga y Sushama Malaji. «Performance evaluation of active clamp forward converter with fuzzy logic controller». En: 2017 International Conference on Intelligent Computing and Control (I2C2). IEEE. 2017, págs. 1-6.spa
dc.relation.referencesJu-Young Lee, Chang-Min Lee y Sang-Kyoo Han. «Two-Switch Reset Winding Forward Converter with Low Input Current Ripple». En: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. IEEE. 2018, págs. 1543-1549spa
dc.relation.referencesIrina A Belova, Miroslav V Martinovich y Vladimir A Skolota. «Neural network model of the solar battery». En: 2017 18th International Conference of Young Specialists on Micro/- Nanotechnologies and Electron Devices (EDM). IEEE. 2017, págs. 417-421spa
dc.relation.referencesS Kumaravel, A Sivaprasad y S Ashok. «A fuzzy controller for a DC/DC converter to integrate different power characteristic sources». En: 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE). IEEE. 2016, págs. 550-555.spa
dc.relation.referencesBabita Panda y Bhagabat Panda. «Non-Linear Sliding Mode Control of Three Phase ACDC PWM Converters». En: International Journal of Application or Innovation in Engineering & Management (IJAIEM) (2013).spa
dc.relation.referencesMartin Lešo y col. «Survey of control methods for DC-DC converters». En: Acta Electrotechnica et Informatica 18.3 (2018), págs. 41-46.spa
dc.relation.referencesPradeep Shenoy y Anthony Fagnani. «Common Mistakes in DC/DC Converters and How to Fix Them». En: Power Supply Design Seminar (2018)spa
dc.relation.referencesAnton Glushchenko y Vladislav Petrov. «Adaptive Control System Based on Neural Tuner of DC Drive with Sinamics DCM». En: 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP). IEEE. 2019, págs. 117-120.spa
dc.relation.referencesMeng Jia, Zhuochao Sun y Liter Siek. «A Novel Zero-Voltage-Detector for Buck Converter in Discontinuous Conduction Mode (DCM)». En: 2018 IEEE 4th Southern Power Electronics Conference (SPEC). IEEE. 2018, págs. 1-4.spa
dc.relation.referencesS-C Tan y col. «Special family of PWM-based sliding-mode voltage controllers for basic DC-DC converters in discontinuous conduction mode». En: IET Electric Power Applications 1.1 (2007), págs. 64-74.spa
dc.relation.referencesCarlos Olalla, Ramon Leyva y Abdelali El Aroudi. «QFT design for current-mode PWM buck converters operating in continuous and discontinuous conduction modes». En: IECON 2006-32nd Annual Conference on IEEE Industrial Electronics. IEEE. 2006, págs. 1828-1833.spa
dc.relation.referencesBabita Panda y col. «A comparative study of pi and fuzzy controllers for solar powered dc-dc boost converter». En: 2015 International Conference on Computational Intelligence and Networks. IEEE. 2015, págs. 47-51.spa
dc.relation.referencesAyoub Jebri y col. «Robust Adaptive Neuronal Controller for Exoskeletons with SlidingMode». En: Neurocomputing (2020)spa
dc.relation.referencesSarah Kliff y col. There Aren’t Enough Ventilators to Cope With the Coronavirus. Mar. de 2020. URL: https://www.nytimes.com/2020/03/18/business/coronavirusventilator-shortage.html.spa
dc.relation.referencesArturo Wallace. Coronavirus: cómo funcionan los respiradores y por qué la desesperada carrera por fabricar más es clave en la batalla contra covid-19. Mar. de 2020. URL: https://www. bbc.com/mundo/noticias-52060716.spa
dc.relation.referencesNubia Ilia Ponce de León Puig y col. «An Adaptive Predictive control scheme with dynamic Hysteresis Modulation applied to a DC-DC buck converter». En: ISA transactions (2020).spa
dc.relation.referencesMengting Zhang y col. «Digital LQR steady-state optimal control with feedforward for nonminimum phase boost DC-DC converter». En: 2016 Chinese Control and Decision Conference (CCDC). IEEE. 2016, págs. 384-389.spa
dc.relation.referencesE Sudeep y col. «Design and implementation of current mode controlled 150W miniature forward converter for defence application». En: 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE. 2016, págs. 1-6.spa
dc.relation.referencesAmir Sharifian, Samaneh Fathi Sasansara y Alireza Agah Balgori. «A new control method based on type-2 fuzzy neural PI controller to improve dynamic performance of a halfbridge DC–DC converter». En: Neurocomputing 214 (2016), págs. 718-728.spa
dc.relation.referencesJA Ganeswari y R Kiranmayi. «Performance improvement for DC boost converter with fuzzy controller». En: 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE. 2018, págs. 358-362spa
dc.relation.referencesRicardo Madeira y col. «Live Demonstration: An Automated Test Bench for an 130nm SC DC-DC Converter». En: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2018, págs. 1-1.spa
dc.relation.referencesReinhard Jaschke. «Conduction losses in dc/dc-converters as buckboost/boostbuck synchronous rectifier types». En: 2007 Compatibility in Power Electronics. IEEE. 2007, págs. 1-10.spa
dc.relation.referencesHao Quan y col. «A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids». En: IEEE Transactions on Neural Networks and Learning Systems (2019).spa
dc.relation.referencesRobert W Erickson y Dragan Maksimovic. Fundamentals of power electronics. Springer Science & Business Media, 2007.spa
dc.relation.referencesT Arunkumari, V Indragandhi y S Sreejith. «Topologies of a DC–DC Converter for Microgrid Application and Implementation of Parallel Quadratic Boost Converter». En: Advances in Smart Grid and Renewable Energy. Springer, 2018, págs. 633-644.spa
dc.relation.referencesAhmed Hussein y col. «The dynamic performance of photovoltaic supplied dc motor fed from DC-DC converter and controlled by neural networks». En: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290). Vol. 1. IEEE. 2002, págs. 607-612.spa
dc.relation.referencesChen Lanping, Ma Zhenghua y Duan Soulin. «Adaptive speed controller design based on backstepping for DC motor system with parameter uncertainties». En: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Vol. 2. IEEE. 2009, págs. 140-144.spa
dc.relation.referencesLi Wang y Mi Sa-Nguyen Thi. «Stability enhancement of large-scale integration of wind, solar, and marine-current power generation fed to an SG-based power system through an LCC-HVDC link». En: IEEE Transactions on Sustainable Energy 5.1 (2013), págs. 160-170.spa
dc.relation.referencesYi-Hung Liao. «A novel reduced switching loss bidirectional AC/DC converter PWM strategy with feedforward control for grid-tied microgrid systems». En: IEEE Transactions on Power Electronics 29.3 (2013), págs. 1500-1513.spa
dc.relation.referencesChequeo COVID-Colombia. Uso de respiradores artificiales en casos críticos de COVID-19. Mayo de 2020. URL: https : / / uniandes . edu . co / es / noticias / salud - y - medicina/uso-respiradores-artificiales-casos-criticos-covid19.spa
dc.relation.referencesAbraham Pressman. Switching power supply design. McGraw-Hill Education, 2009.spa
dc.relation.referencesAfshin Balal, Shah Rukh y Shahab Balali. «Designing a Dual Active Transformer DC-DC Forward Converter for DC Micro-Grid Applications Using LTSPICE». En: International Journal of Applied Engineering Research 16.4 (2021), págs. 327-331.spa
dc.relation.referencesMJ Willis y col. «Artificial neural networks in process engineering». En: IEE Proceedings D (Control Theory and Applications). Vol. 138. 3. IET. 1991, págs. 256-266.spa
dc.relation.referencesJuan P Romero y col. «Bio-inspired PSO technique applied to PID sintonization for powerfactor correction in a Boost Converter». En: 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC). IEEE. 2021, págs. 139-144.spa
dc.relation.referencesHong-Tao Ye y Zhen-Qiang Li. «PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution». En: International Journal of Automation and Computing 17.6 (2020), págs. 867-872.spa
dc.relation.referencesHong-Tao Ye y Zhen-Qiang Li. «PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution». En: International Journal of Automation and Computing 17.6 (2020), págs. 867-872.spa
dc.relation.referencesXiang Lin Zhu y col. «Decoupling control based on fuzzy neural-network inverse system in marine biological enzyme fermentation process». En: IEEE Access 6 (2018), págs. 36168-36175spa
dc.relation.referencesBrian Noriega y col. «Design and Simulation of a Voltage Control Based on Neural Networks». En: 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC). IEEE. 2021, págs. 133-138.spa
dc.relation.referencesBaowei Wang y col. «Temperature error correction based on BP neural network in meteorological wireless sensor network». En: International Journal of Sensor Networks 23.4 (2017), págs. 265-278.spa
dc.relation.referencesJi-chao Li y col. «A link prediction method for heterogeneous networks based on BP neural network». En: Physica A: Statistical Mechanics and its Applications 495 (2018), págs. 1-17.spa
dc.relation.referencesKai Cui y Xiang Jing. «Research on prediction model of geotechnical parameters based on BP neural network». En: Neural Computing and Applications 31.12 (2019), págs. 8205-8215.spa
dc.relation.referencesWei He y Yiting Dong. «Adaptive fuzzy neural network control for a constrained robot using impedance learning». En: IEEE transactions on neural networks and learning systems 29.4 (2017), págs. 1174-1186.spa
dc.relation.referencesPaulo Vitor de Campos Souza. «Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature». En: Applied soft computing 92 (2020), pág. 106275spa
dc.relation.referencesJinjun Tang y col. «Lane-changes prediction based on adaptive fuzzy neural network». En: Expert Systems with Applications 91 (2018), págs. 452-463.spa
dc.relation.referencesJhon Fredy Bayona, Jose Guarnizo y Nancy Gelvez. «Pulse Width Prediction Control Technique Applied to a Half-Bridge Boost». En: Tecciencia 13.25 (2018), págs. 47-54.spa
dc.relation.referencesJosé Guillermo Guarnizo Marin, Nelson Díaz Aldana, Rodríguez Trujillo y col. «Diseño e implementación de un Controlador Neuronal Inverso aplicado a un Conversor VSC para el control de la potencia activa y potencia reactiva, basado en regiones de trabajo». En: Revista Facultad de Ingeniería Universidad de Antioquia 72 (2014), págs. 9-19spa
dc.relation.referencesNelson Díaz Aldcmcí, César Leonardo Trujillo y José Guillermo Guarnizo. «Active and reactive power flow regulation for a grid connected vsc based on fuzzy controllers». En: Revista Facultad de Ingeniería Universidad de Antioquia 66 (2013), págs. 118-130.spa
dc.relation.referencesJose Guillermo Guarnizo Marin, Juan Carlos Lopez Rodriguez y col. «Análisis diseño e implementación de un control neuronal de un conversor DC-DC». B.S. thesis. Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesGuarnizo M José Guillermo, Guacaneme M Javier Antonio y Trujillo R Cesar Leonardo. «General inverse neural current control for buck converter». En: Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics. Springer, 2008, págs. 117-122.spa
dc.relation.referencesGergana VACHEVA, Nikolay HINOV y Bogdan GILEV. «Comparision Between Clasical and Modern Methods for Optimal Control of Buck DC/DC Converter». En: 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). IEEE. 2019, págs. 1-4.spa
dc.relation.referencesTomislav Dragiˇcevi´c, Patrick Wheeler y Frede Blaabjerg. «Artificial intelligence aided automated design for reliability of power electronic systems». En: IEEE Transactions on Power Electronics 34.8 (2018), págs. 7161-7171.spa
dc.relation.referencesHidenori Maruta y Daiki Hoshino. «Transient response improvement of repetitive-trained neural network controlled dc-dc converter with overcompensation suppression». En: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1. IEEE. 2019, págs. 2088-2093.spa
dc.relation.referencesXavier Glorot y Yoshua Bengio. «Understanding the difficulty of training deep feedforward neural networks». En: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop y Conference Proceedings. 2010, págs. 249-256.spa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.keywordArtificial Neural Networkspa
dc.subject.keywordForward converterspa
dc.subject.keywordPower converterspa
dc.subject.keywordDigital controlspa
dc.subject.lembIngeniería eléctricaspa
dc.subject.lembIngenieríaspa
dc.subject.lembRedes neuronales artificialesspa
dc.subject.proposalRed neuronal artificialspa
dc.subject.proposalConvertidor Forwardspa
dc.subject.proposalConvertidor de potenciaspa
dc.subject.proposalControl digitalspa
dc.titleControl de voltaje de salida de un convertidor forward aplicando redes neuronales artificiales.spa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis
dc.type.localTesis de pregradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
2022briannoriega.pdf
Tamaño:
5.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado
Thumbnail USTA
Nombre:
Carta Aprobación Facultad.pdf
Tamaño:
320.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta aprobación facultad
Thumbnail USTA
Nombre:
Carta Derechos de Autor.pdf
Tamaño:
960.95 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta Derechos de autor

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: