Preclinical evaluation of collagen type I scaffolds, including gelatin-collagen microparticles and loaded with a hydroglycolic Calendula officinalis extract in a lagomorph model of full-thickness skin wound

dc.contributor.authorMillán, D.spa
dc.contributor.authorJiménez, R. A.spa
dc.contributor.authorNieto, L. E.spa
dc.contributor.authorLinero, I.spa
dc.contributor.authorLaverde, M.spa
dc.contributor.authorFontanilla, M. R.spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2019-12-17T16:12:43Zspa
dc.date.available2019-12-17T16:12:43Zspa
dc.date.issued2015-11-23spa
dc.description.abstractPreviously, we have developed collagen type I scaffolds including microparticles of gelatin-collagen type I (SGC) that are able to control the release of a hydroglycolic extract of the Calendula officinalis flower. The main goal of the present work was to carry out the preclinical evaluation of SGC alone or loaded with the C. officinalis extract (SGC-E) in a lagomorph model of full-thickness skin wound. A total of 39 rabbits were distributed in three groups, of 13 animals each. The first group was used to compare wound healing by secondary intention (control) with wound healing observed when wounds were grafted with SGC alone. Comparison of control wounds with wounds grafted with SGC-E was performed in the second group, and comparison of wounds grafted with SGC with wounds grafted with SGC-E was performed in the third group. Clinical follow-ups were carried in all animals after surgery, and histological and histomorphometric analyses were performed on tissues taken from the healed area and healthy surrounding tissue. Histological and histomorphometric results indicate that grafting of SGC alone favors wound healing and brings a better clinical outcome than grafting SGC-E. In vitro collagenase digestion data suggested that the association of the C. officinalis extract to SGC increased the SGC-E cross-linking, making it difficult to degrade and affecting its biocompatibility.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1007/s13346-015-0265-8spa
dc.identifier.urihttp://hdl.handle.net/11634/20410
dc.relation.referencesBello SA, Pereria R, Fontanilla MR. Elaboración de tejido conectivo artificial autólogo de mucosa oral y evaluación de su desempeño como cobertura biológica en lesiones mucosas inducidas en conejos. Rev Fed Odontol Colomb. 2004;20:20–4.spa
dc.relation.referencesEspinosa L, Sosnik A, FontanillaMR. Development and preclinical evaluation of acellular collagen scaffolding and autologous artificial connective tissue in the regeneration of oralmucosa wounds. Tissue Eng A. 2010;16(5):1667–79.spa
dc.relation.referencesFontanillaMR, Espinosa LG. In vitro and in vivo assessment of oral autologous artificial connective tissue characteristics that influence its performance as a graft. Tissue Eng A. 2012;18(17–18):1857–66.spa
dc.relation.referencesJansen RG, Kuijpers-Jagtman AM, van Kuppevelt TH, Von den Hoff JW. Collagen scaffolds implanted in the palatal mucosa. J Craniofac Surg. 2008;19(3):599–608.spa
dc.relation.referencesWei PC, Laurell L, Lingen MW, Geivelis M. Acellular dermal matrix allografts to achieve increased attached gingiva. Part 2. A histological comparative study. J Periodontol. 2002;73(3):257–65.spa
dc.relation.referencesWagshall E, Lewis Z, Babich SB, Sinensky MC, Hochberg M. Acellular dermal matrix allograft in the treatment of mucogingival defects in children: illustrative case report. ASDC J Dent Child. 2002;69(1):39–43. 11.spa
dc.relation.referencesThomas LJ, Emmadi P, Thyagarajan R, Namasivayam A. A comparative clinical study of the efficacy of subepithelial connective tissue graft and acellular dermal matrix graft in root coverage:6 months follow-up observation. J Indian Soc Periodontol. 2013;17(4):478–83.spa
dc.relation.referencesTaras JS, Sapienza A, Roach JB, Taras JP. Acellular dermal regeneration template for soft tissue reconstruction of the digits. J Hand Surg [Am]. 2010;35(3):415–21.spa
dc.relation.referencesYannas IV. Emerging rules for inducing organ regeneration. Biomaterials. 2013;34(2):321–30.spa
dc.relation.referencesMoiemen NS, Vlachou E, Staiano JJ, Thawy Y, Frame JD. Reconstructive surgery with Integra dermal regeneration template: histologic study, clinical evaluation, and current practice. Plast Reconstr Surg. 2006;117(7 Suppl):160S–74S.spa
dc.relation.referencesD’Ambrosio M, Ciocarlan A, Colombo E, Guerriero A, Pizza C, Sangiovanni E, et al. Structure and cytotoxic activity of sesquiterpene glycoside esters from calendula officinalis L.: studies on the conformation of viridiflorol. Phytochemistry. 2015;117:1–9.spa
dc.relation.referencesOkuma CH, Andrade TA, CaetanoGF, Finci LI, Maciel NR, Topan JF, et al. Development of lamellar gel phase emulsion containing marigold oil (calendula officinalis) as a potential modern wound dressing. Eur J Pharm Sci. 2015;71:62–72.spa
dc.relation.referencesAlnuqaydan AM, Lenehan CE, Hughes RR, Sanderson BJ. Extracts from calendula officinalis offer in vitro protection against H2 O2 induced oxidative stress cell killing of human skin cells. Phytother Res. 2015;29(1):120–4.spa
dc.relation.referencesHu JJ, Cui T, Rodriguez-Gil JL, Allen GO, Li J, Takita C, et al. Complementary and alternative medicine in reducing radiationinduced skin toxicity. Radiat Environ Biophys. 2014;53(3):621–6.spa
dc.relation.referencesLam PL, Kok SH, Bian ZX, Lam KH, Tang JC, Lee KK, et al. Dglucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for calendula officinalis delivery. Colloids Surf B: Biointerfaces. 2014;117:277–83.spa
dc.relation.referencesMishra AK, Mishra A, Verma A, Chattopadhyay P. Effects of calendula essential Oil-based cream on biochemical parameters of skin of albino rats against ultraviolet B radiation. Sci Pharm. 2012;80(3):669–83.spa
dc.relation.referencesFonseca YM, Catini CD, Vicentini FT, Cardoso JC, De Cavalcanti Albuquerque Jr RL, Vieira Fonseca MJ. Efficacy of marigold extract-loaded formulations against UV-induced oxidative stress. J Pharm Sci. 2011;100(6):2182–93.spa
dc.relation.referencesParente LM, Andrade MA, Brito LA, Moura VM, Miguel MP, Lino-Junior Rde S, et al. Angiogenic activity of calendula officinalis flowers L. in rats. Acta Cir Bras. 2011;26(1):19–24.spa
dc.relation.referencesVargas EA, Do Vale Baracho NC, de Brito J, De Queiroz AA. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010;6(3):1069–78.spa
dc.relation.referencesChandran PK, Kuttan R. Effect of calendula officinalis flower extract on acute phase proteins, antioxidant defense mechanism and granuloma formation during thermal burns. J Clin Biochem Nutr. 2008;43(2):58–64.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordCollagen type Ispa
dc.subject.keywordScaffoldsspa
dc.subject.keywordGelatin-collagen microparticlesspa
dc.subject.keywordCalendula officinalis Lspa
dc.subject.keywordFlowers extractspa
dc.subject.keywordFull-thickness woundsspa
dc.titlePreclinical evaluation of collagen type I scaffolds, including gelatin-collagen microparticles and loaded with a hydroglycolic Calendula officinalis extract in a lagomorph model of full-thickness skin woundspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Preclinical evaluation of collagen type I scaffolds, including gelatin-collagen microparticles and loaded with a hydroglycolic Calendula officinalis extract in a lagomorph model of full-thickness skin wound.pdf
Tamaño:
15.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: