Using the reversible jump MCMC procedure for identifying and estimating univariate TAR models
Fecha
2012-12-21
Autores
Director
Enlace al recurso
ORCID
Google Scholar
Cvlac
gruplac
Descripción Dominio:
Título de la revista
ISSN de la revista
Título del volumen
Editor
Compartir
Documentos PDF
Cargando...
Resumen
Abstract
One way that has been used for identifying and estimating threshold autoregressive
(TAR) models for nonlinear time series follows the Markov chain Monte Carlo (MCMC)
approach via the Gibbs sampler. This route has major computational difficulties, specifically, in getting convergence to the parameter distributions. In this article, a new procedure for identifying a TAR model and for estimating its parameters is developed by following the reversible jump MCMC procedure. It is found that the proposed procedure conveys a Markov chain with convergence properties.
Idioma
Palabras clave
Citación
Colecciones
Licencia Creative Commons
Atribución-NoComercial-CompartirIgual 2.5 Colombia