Using the reversible jump MCMC procedure for identifying and estimating univariate TAR models

Miniatura

Fecha

2012-12-21

Director

Enlace al recurso

ORCID

Google Scholar

Cvlac

gruplac

Título de la revista

ISSN de la revista

Título del volumen

Editor

Compartir

Documentos PDF
Cargando...
Miniatura

Resumen

Abstract

One way that has been used for identifying and estimating threshold autoregressive (TAR) models for nonlinear time series follows the Markov chain Monte Carlo (MCMC) approach via the Gibbs sampler. This route has major computational difficulties, specifically, in getting convergence to the parameter distributions. In this article, a new procedure for identifying a TAR model and for estimating its parameters is developed by following the reversible jump MCMC procedure. It is found that the proposed procedure conveys a Markov chain with convergence properties.

Idioma

Palabras clave

Citación

Licencia Creative Commons

Atribución-NoComercial-CompartirIgual 2.5 Colombia