Using the reversible jump MCMC procedure for identifying and estimating univariate TAR models

dc.contributor.authorNieto, Fabio H.
dc.contributor.authorZhang, Hanwen
dc.coverage.campusCRAI-USTA Bogotáspa
dc.date.accessioned2020-01-22T18:00:03Z
dc.date.available2020-01-22T18:00:03Z
dc.date.issued2012-12-21
dc.description.abstractOne way that has been used for identifying and estimating threshold autoregressive (TAR) models for nonlinear time series follows the Markov chain Monte Carlo (MCMC) approach via the Gibbs sampler. This route has major computational difficulties, specifically, in getting convergence to the parameter distributions. In this article, a new procedure for identifying a TAR model and for estimating its parameters is developed by following the reversible jump MCMC procedure. It is found that the proposed procedure conveys a Markov chain with convergence properties.spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.format.mimetypeapplication/pdfspa
dc.identifier.doihttps://doi.org/10.1080/03610918.2012.655827spa
dc.identifier.urihttp://hdl.handle.net/11634/21041
dc.relation.referencesBrooks, S. P., Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7:434–455.spa
dc.relation.referencesCampbell, E. P. (2004). Bayesian selection of threshold autoregressive models. Journal of Time Series Analysis 25:467–482.spa
dc.relation.referencesCarlin, B. P., Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, Series B 57:473–484.spa
dc.relation.referencesCastelloe, J. M., Zimmerman, D. L. (2002). Convergence Assessment for Reversible Jump MCMC Samplers, SAS Institute Inc. (unpublished manuscript).spa
dc.relation.referencesChen, M., Shao, Q., Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation. New York: Springer-Verlag.spa
dc.relation.referencesChib, S. (1995). Marginal likelihood from the the Gibbs output. Journal of the American Statistical Association 90:1313–1321.spa
dc.relation.referencesGreen, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732.spa
dc.relation.referencesNieto, F. H. (2005). Modeling bivariate threshold autoregressive processes in the presence of missing data. Communications in Statistics—Theory and Methods 34:905–930.spa
dc.relation.referencesNieto, F. H. (2008). Forecasting with univariate TAR models. Statistical Methodology 5:263–276.spa
dc.relation.referencesTong, H. (1978). On a threshold model. In: Chen, C.ed. Pattern Recognition and Signal Processing. Volume 29 of NATO ASI Series E: Applied Sciences. Amsterdam: Sijthoff and Noordhoff, pp. 575–586.spa
dc.relation.referencesTong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford: Oxford University Press.spa
dc.relation.referencesTong, H., Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society, Series B 42:245–292.spa
dc.relation.referencesTsay, R. S. (1998). Testing and modeling multivariate threshold models. Journal of the American Statistical Association 93:1188–1202.spa
dc.relation.referencesVermaak, J., Andrieu, C., Doucet, A., Godsill, S. J. (2004). Reversible jump Markov chain Monte Carlo strategies for Bayesian model selection in autoregressive processes. Journal of Time Series Analysis 25:785–809.spa
dc.relation.referencesVrontos, I. D., Dellaportas, P., Politis, D. N. (2000). Full Bayesian inference for GARCH and EGARCH models. Journal of Business and Economic Statistics 18:187–198.spa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.subject.keywordBayesian model choicespa
dc.subject.keywordNonlinear time seriesspa
dc.subject.keywordRegime-switching modelsspa
dc.subject.keywordRJMCMCspa
dc.subject.keywordThreshold autoregressive (TAR) modelsspa
dc.titleUsing the reversible jump MCMC procedure for identifying and estimating univariate TAR modelsspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Using the Reversible Jump MCMC Procedure for Identifying and Estimating Univariate TAR Models.pdf
Tamaño:
697.11 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo SCOPUS

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: