Using the reversible jump MCMC procedure for identifying and estimating univariate TAR models
dc.contributor.author | Nieto, Fabio H. | |
dc.contributor.author | Zhang, Hanwen | |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.date.accessioned | 2020-01-22T18:00:03Z | |
dc.date.available | 2020-01-22T18:00:03Z | |
dc.date.issued | 2012-12-21 | |
dc.description.abstract | One way that has been used for identifying and estimating threshold autoregressive (TAR) models for nonlinear time series follows the Markov chain Monte Carlo (MCMC) approach via the Gibbs sampler. This route has major computational difficulties, specifically, in getting convergence to the parameter distributions. In this article, a new procedure for identifying a TAR model and for estimating its parameters is developed by following the reversible jump MCMC procedure. It is found that the proposed procedure conveys a Markov chain with convergence properties. | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | https://doi.org/10.1080/03610918.2012.655827 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/21041 | |
dc.relation.references | Brooks, S. P., Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7:434–455. | spa |
dc.relation.references | Campbell, E. P. (2004). Bayesian selection of threshold autoregressive models. Journal of Time Series Analysis 25:467–482. | spa |
dc.relation.references | Carlin, B. P., Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, Series B 57:473–484. | spa |
dc.relation.references | Castelloe, J. M., Zimmerman, D. L. (2002). Convergence Assessment for Reversible Jump MCMC Samplers, SAS Institute Inc. (unpublished manuscript). | spa |
dc.relation.references | Chen, M., Shao, Q., Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation. New York: Springer-Verlag. | spa |
dc.relation.references | Chib, S. (1995). Marginal likelihood from the the Gibbs output. Journal of the American Statistical Association 90:1313–1321. | spa |
dc.relation.references | Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732. | spa |
dc.relation.references | Nieto, F. H. (2005). Modeling bivariate threshold autoregressive processes in the presence of missing data. Communications in Statistics—Theory and Methods 34:905–930. | spa |
dc.relation.references | Nieto, F. H. (2008). Forecasting with univariate TAR models. Statistical Methodology 5:263–276. | spa |
dc.relation.references | Tong, H. (1978). On a threshold model. In: Chen, C.ed. Pattern Recognition and Signal Processing. Volume 29 of NATO ASI Series E: Applied Sciences. Amsterdam: Sijthoff and Noordhoff, pp. 575–586. | spa |
dc.relation.references | Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford: Oxford University Press. | spa |
dc.relation.references | Tong, H., Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society, Series B 42:245–292. | spa |
dc.relation.references | Tsay, R. S. (1998). Testing and modeling multivariate threshold models. Journal of the American Statistical Association 93:1188–1202. | spa |
dc.relation.references | Vermaak, J., Andrieu, C., Doucet, A., Godsill, S. J. (2004). Reversible jump Markov chain Monte Carlo strategies for Bayesian model selection in autoregressive processes. Journal of Time Series Analysis 25:785–809. | spa |
dc.relation.references | Vrontos, I. D., Dellaportas, P., Politis, D. N. (2000). Full Bayesian inference for GARCH and EGARCH models. Journal of Business and Economic Statistics 18:187–198. | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.subject.keyword | Bayesian model choice | spa |
dc.subject.keyword | Nonlinear time series | spa |
dc.subject.keyword | Regime-switching models | spa |
dc.subject.keyword | RJMCMC | spa |
dc.subject.keyword | Threshold autoregressive (TAR) models | spa |
dc.title | Using the reversible jump MCMC procedure for identifying and estimating univariate TAR models | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Using the Reversible Jump MCMC Procedure for Identifying and Estimating Univariate TAR Models.pdf
- Tamaño:
- 697.11 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo SCOPUS
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: